

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Combining max-min ant system with effective local search for solving the maximum set k-covering problem

Yupeng Zhou^{a,b}, Xiaofan Liu^a, Shuli Hu^{a,b,*}, Yiyuan Wang^{a,b,*}, Minghao Yin^{a,b,*}

^a College of Information Science and Technology, Northeast Normal University, Changchun, China ^b Key Laboratory of Applied Statistics of MOE, Northeast Normal University, Changchun, China

ARTICLE INFO

ABSTRACT

Article history: Received 10 June 2021 Received in revised form 14 December 2021 Accepted 17 December 2021 Available online 24 December 2021

Keywords:

Maximum set k-covering problem Double layer selection heuristic Enhanced configuration checking Obvious row weighting Max-min ant system The maximum set k-covering problem (MKCP) is a well-known combinatorial NP-hard problem with rich application scenarios, with the objective of covering as many elements as possible with a limited number of candidate sets. In this paper, an effective ant colony optimization (ACO) algorithm, namely MMAS-ML, is proposed to solve this important problem. Specifically, the double-layer selection heuristic is presented to obtain a high-quality solution, which is used in the initialization process to accelerate the convergence of the algorithm. Moreover, a customized local search is carefully designed, empowering ants with exploitation capacity around the food sources. For such local search procedures, some useful techniques, that is, the scoring function, delayed configuration checking, oblivious row weighting, and best from multiple selections, have been developed to enhance the performance. In addition, the max-min ant system with memory ants is further designed to confine the upper and lower bounds of the pheromone to avoid ACO stagnation. A detailed experimental evaluation of various instances reveals that the newly proposed algorithm outperforms other state-of-the-art heuristics for the MKCP, and the developed components contribute to the entire framework.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The minimum set cover problem (MSCP) is considered a wellknown combinational optimization problem, which aims to identify the set cover with the smallest number of sets [1]. Given a row set $R = \{r_1, ..., r_m\}$ and a column set $C = \{C_1, ..., C_n\}$, where each column C_i is a subset of R, the set cover refers to finding a subset S of C such that the union set of S is equal to R. As a generalized version of the MKCP, the maximum set k-covering problem of MKCP seeks to find a subset S with a given cardinality k such that the number of rows covered by S is maximized.

Recently, the big data era has witnessed an explosion in data, which brings challenges to tackling optimization thoroughly within limited time and with limited computing resources. In this case, MKCP becomes more valuable as the flexible setting of k, allows a compromise between complexity and quality. Thus, it is natural that MKCP has practical significance in many real-world applications, such as maximal covering location [2], k-barrier coverage in wireless sensor networks [3], and blog monitoring applications [4]. To highlight the practical value of MKCP, a real scenario in a web search is illustrated [5]. Suppose that a

* Corresponding author.

E-mail addresses: zhouyp605@nenu.edu.cn (Y. Zhou), liuxf469@nenu.edu.cn (X. Liu), husl903@nenu.edu.cn (S. Hu), wangyy912@nenu.edu.cn (Y. Wang), ymh@nenu.edu.cn (M. Yin). search engine wishes to focus on 1000 queries to satisfy as many users as possible. Each query is considered a column and the users are represented by the rows contained in the column. This optimization problem can be viewed as MKCP.

To the best of our knowledge, there have been only two attempts to use swarm intelligence algorithms to solve MKCP [6. 7], and potential improvements of these solutions await further studies. In this study, to further narrow the gap between true and generated solutions of MKCP, an algorithm combining a novel max-min ant system with an effective local search is proposed. Ant colony optimization (ACO) is a classical metaheuristic in combinatorial optimization [8], which is inspired by the foraging behavior of real ant colonies. In ACO, each ant can be regarded as a probabilistic construction heuristic that uses historical experiences, including pheromone trails and problem-specific knowledge. As one of the most popular frameworks in the swarm intelligence community, ACO has been successfully applied to many challenging optimization problems, such as the minimum weight vertex cover problem [9], the multidimensional knapsack problem [10], the maximum clique problem [11], the set covering problem [12,13], the maximum independent set problem [14], and feature selection [15,16]. For a deeper comprehension of ACO, readers are referred to surveys [17,18]. With the development of ACO, many variants of ACO have been proposed to adjust the rich optimization scenarios. Among these variants, the max-min ant system (MMAS) has attracted significant attention, which limits

the pheromone values to an interval $[\tau_{min}, \tau_{max}]$ to avoid premature stagnation [19]. Thus, to handle MKCP, MMAS is adopted as the basic framework, and improved upon in three aspects: the initialization process, local search method, and memory ant construction.

In the initialization process, an effective double-layer selection heuristic is designed to refine the selection of the candidate columns, which extends the greedy constructive procedure adopted in [6]. After the heuristic, two types of local search methods are applied to obtain two excellent solutions. Then, with the help of the ant construction, all ants are initialized with high-quality and diversified solutions. This novel initialization heuristic can handle more complicated conditions compared with the greedy heuristic.

As for the local search method, two novel ideas are proposed to improve effectiveness. First, the multiple scoring mechanism (MSM) is introduced to determine the column to select. Second, to overcome the serious cycling problem in local search, a new version of configuration checking, namely, delayed configuration checking (DCC) is presented. In addition, the popular removal technique of the best from multiple selections (BMS) [20], is used to reduce the complexity of the removal process. Furthermore, classical edge weighting [21] is extended to solve MKCP, resulting in an oblivious row weighting (ORW) strategy.

The memory ant construction part specifies the work of each ant in the max–min ant system, where the ants are often regarded as a whole population without distinction to previous works. The ants with memories will reserve parts of their visited routes, regardless of others' pheromones. In this way, the solution construction process of an ant is accelerated, and a different search strength is achieved.

Based on the above three contributions, a max-min ant system is proposed with memory ants and a novel local search, namely MMAS-ML, to solve MKCP. It is worth mentioning that the proposed algorithm is essentially a memetic algorithm (MA), which can be viewed as a hybrid evolutionary algorithm that combines global and local search by using evolutionary or swarm intelligence algorithms to perform exploration while local search to perform exploitation. Because MAs have attracted significant attention in computing methodologies [22] and practical implementations [23], we decided to further explore combinational optimization problems.

Experiments were carried out to compare MMAS-ML with state-of-the-art MKCP algorithms on a broad range of classical benchmarks from OR-Library [24]. The experimental results show that MMAS-ML significantly outperforms previous algorithms in terms of solution quality for most instances. Specifically, MMAS-ML obtains better results than CPLEX, GOPS, RNKC, ABPSO, and HBABC for 136, 150, 95, 25, and 24 instances, respectively. Moreover, MMAS-ML also outperforms two MSCP algorithms, uSLC [25] and RWLS [26], for all instances.

The main contributions are outlined as follows:

- 1. First, with regard to solution methods, a max-min ant system is proposed with memory ants and a novel local search, namely MMAS-ML, to solve MKCP. Five valid strategies are designed, including the double-layer selection heuristic, the multiple scoring mechanism of the local search, delayed configuration checking, oblivious row weighting, and memory ant constructions.
- 2. Second, the computational performance of the proposed algorithm is assessed by comparing with seven state-of-the-art algorithms on a set of 150 benchmark instances. The experimental evaluation reveals that the proposed algorithm outperforms other state-of-the-art heuristics for the MKCP.

3. Third, three key components of MMAS-ML have been investigated and discussed in the form of experimental verification. The results show that all of the key components of MMAS-ML play an important role in the proposed algorithm, making MMAS-ML competitive.

The remainder of this paper is structured as follows. In Section 2, related work is reviewed. In Section 3, preliminary knowledge is introduced. In Section 4, the entire framework of the proposed MMAS-ML algorithm is given. In Section 5, the details of the double-layer selection heuristic, the local search and the ant construction process are presented. In Section 6, the computational results are reported and discussed. Finally, conclusions are drawn and future work is suggested.

2. Related work

It is well known that MKCP is an NP-hard problem [1], which means that no polynomial-time algorithms exist unless NP=P. To this end, approximation algorithms have been designed to maintain the approximation guarantee. A (1-1/e)-approximation greedy algorithm [27] was used to solve MKCP. Subsequently, Chierichetti et al. [5] improved the approximation ratio to approximately 0.63 by a map reduce-based algorithm. Yu and Yuan [28] then proposed a single-pass algorithm with an approximation factor of approximately 0.3. Until recently, two $(1-1/e-\epsilon)$ -approximation algorithms [29] were designed for a small value of ϵ . For large and hard instances however, approximation algorithms usually exhibit poor performance in practice.

To address this, some researchers focused on heuristic algorithms to obtain a good solution within an acceptable time for MKCP. In 2018, Wang et al. [30] designed a restart local search algorithm to solve MKCP and compared the results with a high-performance mathematical programming solver CPLEX.¹ They generated competitive solutions for the lower and upper bounds of the tested instances. It is worth noting that the proposed local search was efficient during the optimization process. which made a breakthrough in tackling MKCP in a short time. They first used a random restart method to overcome the serious cycling problem in which the algorithm returns to a candidate solution that has already been visited. To further improve the solution quality, a novel neighborhood search was applied to explore a more feasible search space. Noting the significance of MKCP and the gap between the approximate and optimal solutions, another heuristic algorithm, adaptive binary particle swarm optimization (ABPSO) [6], was proposed. They integrated a greedy constructive procedure and a fast iterative local search into the binary particle swarm optimization, and then applied adaptive mutation and gain updating techniques to further improve the effectiveness of ABPSO. Based on these techniques, the proposed ABPSO achieved better performance on a wide range of benchmarks. In a recent study, Lin et al. proposed a hybrid binary artificial bee colony algorithm (HBABC) to solve MKCP [7]. They developed a new food source updating method and tabu-based simulated annealing to balance the intensification and diversification of the algorithm. Experimental results show that HBABC improves the solution, greatly advancing the research on MKCP.

3. Preliminaries

Given a finite row set $R = \{r_1, \ldots, r_m\}$ of *m* elements, the column set is defined as $C = \{C_1, \ldots, C_n\}$ of *n* columns, where each column $C_i = \{r_{i_1}, \ldots, r_{i_{k_i}}\}$ is a subset of *R*. To present the inclusion relation between the row and column sets, an *m*-row,

¹ https://www.ibm.com/products/ilog-cplex-optimization-studio.

n-column, zero-one matrix $M = (m_{i,j})$ is introduced. $m_{i,j} = 1$ indicates that the *i*th row is covered by the *j*th column. Thus, the matrix M is considered to be a look-up table that can provide the covering information of the sets within O(1) time. In addition, two Boolean variables x_i and y_j are imported to denote whether r_i is covered, and C_j is selected. The following definitions are based on this notation.

Definition 1 (*Minimum Set Cover Problem, MSCP*). Given a row set *R* and a column set *C*, the set cover problem is to find a nonempty subset *S* of *C*, such that the union set of *S* is equal to *R*. In particular, when the aim of the optimization is to seek the set *S'* of the minimum cardinality among all sets *S*, it is called the minimum set cover problem.

Definition 2 (*Maximum Set k-Covering Problem, MKCP*). Given a row set R together with a column set C, the maximum set k-covering problem aims to find a subset of C with cardinality k to cover as many rows as possible.

The MKCP can be represented through the following integer programming formulations:

Maximize
$$F(X) = \sum_{i=1}^{m} x_i$$
 (1)

Subject to

$$\sum_{i=1}^{n} m_{i,j} y_j \ge x_i, \forall i \in \mathbb{R}$$
⁽²⁾

$$\sum_{j=1}^{n} y_j = k \tag{3}$$

$$y_j \in \{0, 1\}, \ \forall j \in C \tag{4}$$

$$x_i \in \{0, 1\}, \ \forall i \in R \tag{5}$$

Eq. (1) describes the objective function of MKCP. As for the constraints, Eq. (2) defines the relation between x_i and y_j . Eq. (3) requires that only k subsets are selected in the solution. Eqs. (5) and (6) stipulate the domains of the variables. From the definitions of MSCP and MKCP, it is easy to see that MKCP can be transformed into MSCP when the value of k is sufficiently large such that all elements in R are covered. Thus, it can be concluded that MKCP is a general version of MSCP, which plays a significant role in the set covering family. The main distinction between MSCP and MKCP focuses on covering as many elements as possible with limited subsets of C. In other words, the optimization of MSCP should pay special attention to the unique sets even if they contain a small number of elements. However, for MKCP, the primary task is to select the sets with the maximum benefits.

MKCP is illustrated on an example in Fig. 1 to enhance comprehension.

One of the minimum set covers of the column set $C = \{C_1, C_2, ..., C_{13}\}$ is $S = \{C_1, C_2, C_3, C_5, C_6, C_7, C_8\}$ with an objective of 7. For the optimization of MKCP when k = 4, one of the maximum set k-coverings is $S_a = \{C_2, C_3, C_4, C_5\}$ with an objective of 12. When k = 5, the solution is $S_b = \{C_2, C_3, C_5, C_6, C_7\}$ with an objective of 15. Obviously, compared with S_a , the structure of S_b changes: column C_4 needs to be removed from S_a , and the other two columns C_6 and C_7 should be added. This indicates that the maximum set k-covering problem cannot be optimized by simply adding an appropriate column into a maximum set (k-1)-covering solution.

Fig. 1. A 19-row, 13-column, 0-1 matrix of MKCP .

4. The MAX-MIN ant system with memory ants for MKCP

The max-min ant system with memory ants for MKCP is introduced as the top-level algorithm in this section. After a brief background on the framework, details related to the important components of MMAS-ML are discussed in the next section.

Algorithm 1: The framework of MMAS-ML
Input: element-set matrix <i>M</i>
Output: current best solution <i>S</i> _g
 initialize pheromone trails and parameters;
2 $S_0 := DoubleLayerSelection(M);$
$S_g := ObliviousLS(S_0), S'_g := LS(S_0);$
$4 [SS_1 : SS_2] := AntConstruction([S_g : S'_g], \tau, \eta, \chi);$
5 for $t = 1, 2, \cdots, Ants $ do
6 if $S_t \in SS_1$ then $S_t := ObliviousLS(S_t)$;
7 else if $S_t \in SS_2$ then $S_t := LS(S_t)$;
8 $S_g := \arg \max_{S \in [SS_1:SS_2]} F(S); // Eq. (1)$
9 while termination criterion is not met do
10 for $t = 1, 2, \cdots, Ants $ do
11 $S_t := AntConstruction(S_g, \tau, \eta, \chi);$
if $S_t \in SS_1$ then $S_t := ObliviousLS(S_t)$;
13 else if $S_t \in SS_2$ then $S_t := LS(S_t)$;
14 if $F(S_g) < F(S_t)$ then $S_g := S_t$;
15 update pheromone trails according to Eq. (7).;
16 return S_g ;

The main framework of MMAS-ML is presented in Algorithm 1. The algorithm loads the matrix M and outputs the current best solution whereby the output matrix captures the characteristics of different instances. Specifically, initializations of the parameters and pheromone trails are carried out at the beginning (line 1). Then, S_0 is produced by the double-layer selection heuristic (see Section 5.1) as the reference solution of the initial population (line 2). Based on the reference solution, two global best solutions S_g and S'_g are generated through two types of local search procedures, namely *obliviousLS*() and *LS*() (line 3). Note that the

local search adopted in line 3 applies fewer iterations than the method discussed in Section 5.3, saving computational resources while maintaining a high-quality solution. ObliviousLS, which has objective function Eq. (8), is stated in Section 5.3.4, and LS is the version of *obliviousLS* without the oblivious row weighting scheme and optimizes Eq. (1). Obviously, LS pays more attention to the original objective function itself because the objective function guides the search direction using Eq. (1), and thus is not interfered with by uncovered rows. Because the local search procedures are handled separately, the ant colony is divided into two categories, S and S', in which each ant has a different memory level, that is, $\chi\% = 0\%, 0\% - -50\%, 50 - -100\%$, and 100% (line 4). Thus, in our study, eight ants are used in MMAS-ML. More details on memory ants are described in Section 5.2. These two categories of ants perform different local search processes to fully explore the search space (lines 5–7). In the subsequent ant colony iteration, the current best solution is selected from the joint population of all ants and is used as the input of the overall ant colony during the next iteration (line 8).

In lines 9–15, the iterative process loops until the termination criterion is satisfied. In this study, the stopping criterion was set as the time limit. During one loop, each ant constructs a feasible solution S_t based on three factors: the pheromone factor τ , heuristic factor η , and memory level χ (line 11). Then, the first group of ants SS₁ adopts the oblivious local search to improve the current solution (line 12), while the second group of ants SS₂ perform a different local search on the current solution (line 13). After the application of these two local search methods, the global best solution S_g is updated for the next ant construction procedure (line 14). At the end of each iteration, the pheromone trails are renewed by the global best solution, as shown in Eq. (7)(line 15), which is used in the elitist ant system to increase the efficiency of ACO by intensifying the search near the global best solution. Finally, S_g is returned as the best solution that MMAS-ML has found (line 16).

To determine the efficiency of the proposed algorithm, the time complexity of MMAS-ML is analyzed as follows. As the initialization is performed only once in the entire procedure, the discussion only focuses on the time complexity of the MMAS and local search in each iteration. The notation adopted is as follows: k is the number of columns to select; n is the cardinality of the column set C; and *lter* is the number of iterations for the local search. For MMAS, the ant construction is bounded in O(k * n), and the pheromone is updated in O(n) time. For the local search process, the total time complexity is O(Iter * n). Finally, the time complexity of a single MMAS-ML iteration is O(k * n + Iter * n).

5. Main components of MMAS-ML

5.1. The double layer selection heuristic

Although the metaheuristics can be adapted to solve different optimization problems without significant changes, convergence is usually slow because of a lack of knowledge on the specific problem. In this case, heuristics are necessary to deliver the information reflecting the comprehension of domain experts into the optimization procedure.

To solve MKCP, a natural idea is to add the worthiest column each time, which covers most of the rows in the current uncovered row set. This greedy heuristic has been used in previous algorithms such as RNKC [30] and ABPSO [6], and has achieved good results. However, the selection of the worthiest column may be uncertain because more than one valuable column can exist at the same time. Therefore, additional criteria are proposed for selecting promising columns to cover more rows. The pseudocode for the double-layer selection is given in Algorithm 2. Before proceeding, some definitions are provided to describe the benefit of the columns to be selected for the candidate solution. **Definition 3** (*Gain of Column*). The gain of the column C_i , denoted as $gain(C_i)$, is defined as the number of uncovered rows that will be covered when the column C_i is added into the solution.

Definition 4 (*Independent and Pseudo-Independent Rows*). The row r_i is called the independent row iff r_i is covered by only one column of *C*. In particular, the row r_j is called the pseudo-independent row if it is covered by only one column of $C \setminus C^l$, where $C^l \subset C$.

Compared with the independent rows, the pseudoindependent rows have more relaxed constraints. That is, if some columns are blocked (denoted as C^{l}) from C, there exist independent rows, referred to as the pseudo-independent rows. Given these definitions, the double layer selection heuristic is used to construct a promising solution using the following rules: (1) In the first level (lines 3-5), only one column with the largest $gain(C_i)$ is added to the solution. If more than one column exists, record these sets in C' and go to the second level. (2) In the second level (lines 7-15), the column with the most independent rows in C' is selected for the solution. If more than one column in C''exists, randomly select one column (lines 7-9). Otherwise, if no independent rows exist, select the row with the most pseudoindependent rows in C'. Note that the pseudo-independent row is covered by only one column in C'. In addition, if more than one column in C''' exist, randomly select one from C''', or else select the column with the largest cardinality from C' (lines 11–15). This heuristic is executed iteratively until *k* columns are selected. Finally, the solution *S*⁰ is returned.

Algorithm 2: DoubleLayerSelection
Input: element-Set matrix <i>M</i>
Output: initial solution S ₀
1 Initialize $S_0 = \emptyset$;
2 while $ S_0 < k$ do
$C' := \{C_i gain(C_i) \ge gain(C_j), C_i \in C, \forall C_j \in C\};$
4 if $ C' = 1$ then
s elect only one column C_r in C' ;
6 else
7 $C'' :=$ columns with most independent rows in C' ;
s if $ C'' \ge 1$ then
9 select a random column C_r in C'' ;
10 else
11 $C''' :=$ columns with most pseudo-independent
rows in C';
12 if $ C''' \ge 1$ then
13 select a random column C_r in C''' ;
14 else
15 select a random column <i>C_r</i> with most
elements in <i>C</i> ';
$16 [S_0 := S_0 \cup C_r;$
17 return <i>S</i> ₀ ;

From a comprehensive perspective, the proposed method adds columns with the most uncovered rows or columns that can cover most independent and pseudo-independent rows. The method also considers the diversification of S_0 , as it randomly selects the columns in certain cases. Take Fig. 1 for example, the double layer selection can find the maximum set k-covering $S_a = \{C_2, C_3, C_4, C_5\}$ with the objective value of 12 when k = 4, while the previous greedy heuristic only had a probability of 2/3 to obtain the same solution.

The gain values are calculated once the instance is input, and the largest gain values of the columns are determined in O(n)time in this process (Line 3). Considering the time complexity of calculating the number of independent rows in each set, finding the columns with the most independent rows takes O(m*n) time (Line 7). Similarly, the pseudo-independent rows have a time complexity of O(m*n) (Line 11). As the gain values should be dynamically updated when the solution is changed, the operation in Line 16 takes O(m*n) time. Given the above, the double-layer selection has a time complexity of O(k*m*n).

5.2. Memory ant construction

Ant colony optimization is a popular swarm-based algorithm that is suitable for combinatorial optimization problems. The main idea of ACO is to model the problem by searching for a minimum cost path in a graph by a colony of artificial ants. The ants find the optimal path by communicating through artificial pheromone trails. For MKCP, the construction of the graph by each ant is a *k*-step process, where one vertex is selected at each step according to the weight of the edges. In the constructed graph, the vertex is the column of MKCP, and the weight of each edge is defined as the probability that measures the pheromone trails and problem-dependent heuristic information. When the ant determines a feasible solution, it releases pheromones on traveled vertices, which helps the ants move towards promising areas. The pheromone manifests the cooperation of the ant colony and accumulates gradually as the iteration increases. With the development of ACO research, MMAS [19] has been proposed to deal with early stagnation by imposing upper and lower bounds of pheromone trails.

Suppose that τ_j denotes the pheromone of column C_j , and η_j represents the heuristic information on C_j in MKCP. Given a partial solution S_t coupled with the complementary solution $\overline{S_t}$, the state transition rule for ants can be set as follows:

$$P_{j} = \begin{cases} \frac{\tau_{j} \cdot \eta_{j}^{\nu}}{\sum_{i \in \bar{S}_{t}} \tau_{i} \cdot \eta_{i}^{\beta}}, & \text{if } C_{j} \in \bar{S}_{t} \\ 0, & \text{if } C_{j} \notin \bar{S}_{t} \end{cases}$$
(6)

where the parameter β controls the heuristic strength in MMAS. The heuristic information η_j is equal to the fitness gain after a certain operation. This transition rule states that column C_j can be selected as the solution with a probability of P_j . The pheromone updating rule is accumulated by the global best ant.

$$\tau_{j} = \begin{cases} \tau_{min}, & \text{if } \tau_{j} \leq \tau_{min} \\ \tau_{max}, & \text{if } \tau_{j} \geq \tau_{max} \\ \rho \cdot \tau_{j} + \Delta \tau_{j}, & \text{otherwise} \end{cases}$$
(7)

where ρ is the pheromone volatilization coefficient, and $\Delta \tau_j$ is the amount of pheromone released on column C_j by the global best ant.

After introducing the preliminaries of MMAS, an improvement to MMAS, called MMAS with memory ants (MMAS-ML), is presented. In MMAS-ML, each ant is noticed by the best ant at the end of each path-finding process and has certain memories of the best path. Meanwhile, each ant has its own work and adopts different searching modes to expand the search area.

Different from the original ant construction process, each ant has a memory of the learned information from the best ant, and the memory effect varies for different ants. Specifically, there are four memory levels in MMAS-ML: χ_1 %, χ_2 %, χ_3 %, and χ_4 %. The first level χ_1 % = 0 is a new reconstruction of the solution based on the pheromone and heuristic information. In contrast, the ant with the fourth level χ_4 % = 100% inherits the same solution from the best ant to prevent insufficient local searches. The remaining two levels maintain parts of the good structures of the best ant

as well as the diversification capacity of ACO, which results in a faster convergence of MMAS-ML. The ant with $\chi_2\% = rnd\%$, where rnd% is a random number between 0 and 50% and shares rnd% of the same columns of the best ant. Likewise, $\chi_3\% = rnd\%$, where rnd% is a random number between 50% and 100%. The pseudocode for the memory-ant construction procedure is given in Algorithm 3.

Algorithm 3: AntConstruction	
Input: S_g , τ , η and χ	
Output: S _t	
1 $S_t = \emptyset;$	
2 generate a memory level χ %;	
3 select χ % of columns from S_g randomly;	
4 add the selected columns into S_t ;	
5 while $ S_t < k$ do	
6 select $C_j \in C \setminus S_t$ by roulette according to Eq. (6).;	
7 $\sum S_t := S_t \cup C_j;$	
s return S_t ;	

5.3. The score-based local search with delayed configuration checking

Although MMAS improves the solution by the positive feedback of pheromone accumulation, the optimal solution may be unpolished and time-consuming to determine. To address this issue, a local search is proposed to remedy the exploitation capacity of MMAS. In other words, each ant should learn to search the surrounding space of the food sources carefully to generate a better pheromone for the whole population. The strategies of the local search for MKCP are first described, and then the entire local search framework is provided.

5.3.1. Delayed configuration checking

Configuration checking (CC) is an efficient strategy for dealing with the cycling problem and has achieved very good results for the minimum vertex cover problem [31]. The CC strategy maintains a vector of Boolean values, which represent the configuration of each variable. The configuration of one variable determines whether this variable is operational and can be dynamically changed according to the neighborhood state of the variable. Prior to stating the CC rules for MKCP, the key concept of the neighborhood of the column is defined.

Definition 5 (*Neighborhood of Columns*). The neighborhood of the column C_i is defined as the whole columns C^N of C, such that each column $C_j \in C^N$ covers at least one row that is also contained by C_i . Formally, *Neighbor*(C_i) = { $C_i | C_i \cap C_j \neq \emptyset$, $C_i \in C$, $c_j \in C$, $i \neq j$ }.

Given this definition, a Boolean array, denoted as *conf*, is introduced to determine whether the column can be operated on at that iteration. The delayed configuration checking (DCC) was maintained using the following rules:

Rule 1: The configuration of all columns, namely *conf*, is initialized as true, indicating that all columns can be added into the solution.

Rule 2: When column C_i is removed from the solution, its configuration $conf[C_i]$ is set to false to prevent from being added back to the solution immediately. In addition, all the neighborhoods of that column, $Neighbor(C_i)$, set their configuration as true.

Rule 3: When column C_i is added to the solution, its configuration $conf[C_i]$ is set to false temporarily to restraint the removal of C_i in the next round. Furthermore, the previous column with a temporary false value of the configuration is reset to true. Meanwhile, all the neighborhoods $Neighbor(C_i)$ set the configuration as true.

The difference between DCC and the classical CC is the enhanced limitation of Rule 3, which prevents an added column C_i from being deleted again in the next iteration. Of course, this configuration $conf[C_i]$ is maintained as false until the next column C_j is added, to avoid the condition that no candidate columns exist to be removed.

5.3.2. Oblivious row weighting

In Definition 3 above, the gain of column C_i reflects the real benefits C_i can bring to the objective function. However, this gain may lead to a local optimum, as some fixed columns are often selected. Therefore, the row weighting strategy is imported to increase the importance of "inactive" rows, as adopted in [32]. Note that the importance of "inactive" rows should not be increased without limit, so in this study, oblivious row weighting is proposed to set an upper bound on the inactive level for each row.

Definition 6 (*Inactive Level*). For each row $r_i \in R$, the inactive level is denoted as $Inal[r_i]$, which is initialized to 1 at the beginning. At the end of each iteration, for each uncovered row r'_i , $Inal[r'_i]$ is increased by 1. When the inactive level $Inal[r'_i]$ reaches the threshold *ts*, it begins to reduce parts of the level, that is, $Inal[r'_i] = Inal[r'_i] \times \delta$, where $\delta \in (0, 1)$ is the oblivious ratio.

In brief, uncovered rows will continually increase the likelihood of being selected into the solution through an oblivious row weighting scheme. To balance the unfair increment speed between covered and uncovered rows, the value of $Inal[r'_j]$ is decreased once it reaches the threshold. Based on the definition of the inactive level, the final fitness function of each solution *S* is determined as follows:

$$fitness(S) = \sum_{j=1}^{m} Inal[r_j] * x_j$$
(8)

Although the oblivious row weighting strategy concentrates on the balance of the intensification and diversification of the selection process, it is difficult to seize the opportunity when the inactive rows dominate the frequently covered rows. In this case, a variant of local search is shown in Algorithm 4, namely *ObliviousLS*, is applied to guarantee a detailed search of the promising areas by eliminating the strategy of the oblivious row weighting. Thus, the ants are divided into two groups, one for *ObliviousLS* and the other for *LS*.

5.3.3. Multiple scoring mechanism

To actuate the local search, the scoring function is often applied to decide which neighborhoods to move forward to. Intuitively, the fitness value is assumed to be an adequate metric to guide the search direction. To be specific, the scoring function of the column C_i can be stated as:

$$score(C_i) = fitness(S') - fitness(S)$$
 (9)

where S' is the solution after the operation (add or remove) of C_i , and S is a candidate solution. Each *score* value of the column is initialized as the cardinality of the column and is updated dynamically to save computation time. Also, as Eq. (9) shows that the *score* value of the column to be added is positive, while for the column to be removed it is negative. Therefore, the column with the largest value of *score* is operated on during the approximation of the optimal solution.

After using the above scoring method, it was determined that a number of columns have the same *score* values. To this end, a multiple-scoring mechanism is required to break the ties. In general, subscores are often employed when the score functions have the same value [33,34]. The evaluation of the subscore differs as

Algonithm	1.	Oh	linia	June I C
Algorium	4.	UUI	uvu	iusts

	Input: current solution <i>S</i> _t
	Output: improved solution <i>S</i> _t
1	while termination criteria not met do
2	C_j =BMS(S_t) based on the selection rule;
3	$S_t := S_t \setminus C_j;$
4	update Inal, score and subscore;
5	update the DCC array <i>conf</i> ;
6	select one uncovered row <i>r</i> _i randomly;
7	$C' := C \setminus S_t$ with r_i being covered;
8	select $C'_i \in C'$ based on the selection rule;
9	$S_t := S_t \cup C_j;$
10	update Inal, score and subscore;
11	update the DCC array <i>conf</i> ;
12	if $F(S_g) < F(S_t)$ then $S_g := S_t$;
13	return S_t .

the optimization problems change. In MKCP, the independent row of the solution is another important factor that should be considered in the local search procedure. The independent rows are identified as important because the number of covered elements decreases when the column with independent rows is removed from the candidate solution. Suppose that the number of times row r_j is covered is $CT(r_j)$, then two functions called $oneTotwo(C_i)$ and $twoToone(C_i)$ can be defined. $oneTotwo(C_i)$ counts the number of rows from CT = 1 to CT = 2 after adding C_i , whereas $twoToone(C_i)$ calculates the number of rows from CT = 2 to CT = 1 after removing C_i . Then, the subscore is defined as:

$$subscore(C_i) = \begin{cases} oneTot wo(C_i) \text{ if } C_i \text{ is added} \\ -twoToone(C_i) \text{ if } C_i \text{ is removed} \end{cases}$$
(10)

A larger *subscore* value is preferred to make the solution robust when the score values are equal. The combination of *score* and *subscore* provides a comprehensive estimation of the columns, which makes the selection process effective and robust. Finally, the selection rule to decide which column to choose, is presented as follows:

Selection Rule: Select one column $C_i \in C$ with the largest *score* value and *conf* [C_i] true, and in case of ties, pick the column with the largest *subscore* value. If more than one selected column has the same maximum *subscore* and the same maximum *score*, the oldest column, that is, the one that has not been changed for the longest time is selected.

5.3.4. Framework of the local search

The framework of the oblivious local search is briefly demonstrated from an overall perspective (Algorithm 4).

During each iteration, a destroy-and-rebuild process is executed to dislodge the current solution to its neighborhood solutions, which can improve the number of covered rows (lines 1–11). To handle large-scale instances, the BMS strategy [20] is applied such that the search space is shrunk to a reasonable size (line 2). As the name indicates, BMS chooses the best solution from multiple μ selections. The method of selecting the best solution obeys the rules defined in the multiple scoring mechanism (Section 5.3.3). It should be noted that during the selection process in BMS, only the column labeled $conf[C_i] = true$ can be selected. Once column C_i is picked, it is removed from the current solution S_t (line 3). After removal, the score, subscore, and Inal are updated (line 4). In addition, the delayed configuration arrays of the operated column along with its neighborhoods are also updated, as shown in Section 5.3.1 (line 5). In contrast to the removal operator, the add operator does not perform BMS

Fig. 2. The coverage rate of MMAS-ML for MSCP.

because it uses substitution to reduce the solution space. Specifically, an uncovered row r_i is randomly selected, which is to be covered next (line 6). Then, all the columns C' that cover r_i are collected, except for those selected in S_t (line 7). The multiple scoring mechanism is applied to the collected columns once again to select the best column to add (line 8). Of course, the selected column should satisfy the constraint $conf[C'_i] = true$. When the selected column C_i is added to the current solution (line 9), a similar updating process is performed, as mentioned before (lines 10–11). The newly generated solution S_t is checked to determine whether the global best solution can be updated. If so, S_g is replaced with S_t (line 12). The entire local search process terminates when the solution has not been improved for Iter times. After the stop criterion is met, S_t is returned as the output (line 13). The destroy-and-rebuild method ensures that the generated solution is feasible.

6. Experimental studies

MMAS-ML was evaluated on a large number of instances from the OR-Library [24] by comparing it with state-of-the-art algorithms. In addition, additional experiments were conducted to analyze the impact of the main components of MMAS-ML, that is, the double-layer selection heuristic, the max-min ant system framework, and the score-based local search.

6.1. Experiment preliminaries

To verify the effectiveness of MMAS-ML, it was compared with four incomplete algorithms, namely, GOPS [28], RNKC [30], ABPSO [6], and HBABC [7]. The results from an exact solver called CPLEX (a public high-performance mathematical programming solver) were also compared. MMAS-ML and all competitors were implemented in C++ and compiled by g++ with '-O3' option. All the experiments were performed on an Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20 GHz with 128 GB RAM under CentOS 6.9.

All algorithms were evaluated on a large number of instances from the OR-Library [24]. For each instance, two values of k were considered, (k_{90} and k_{95}), indicating that only 90% and 95% of the columns in the best-known solutions of MSCP [26] are selected. Detailed information on a total of 150 instances, including the number of elements, columns, and density, can be found in [6]. All the algorithms were performed 10 times for each instance within a cutoff time of 100 s. The following indicators are reported: the best solution ("*BEST*") among 10 runs, the corresponding average solution ("*AVG*"), and the average run time ("*TIME*") for when the algorithm obtains the maximal solution value. In addition, "#*Better*" indicates the number of instances where MMAS-ML finds better maximal(average) solutions, while "#*Worse*" indicates the number of instances where MMAS-ML finds worse maximal(average) solutions. "#*Draw*" calculates the number of instances where MMAS-ML does not significantly differ from its variants.

6.2. Parameter tuning

In this subsection, the automatic configuration tool irace [35] was used to find well-working values for the parameters of MMAS-ML. Table 1 summarizes the parameters of the MMAS-ML algorithm to be adjusted, i.e., δ , ts, μ , lter, ρ , β . The training set was restricted to 14 representative training instances selected from all 14 categories of the tested instances. The tuning process was given a budget of 5000 runs of MMAS-ML, with a cutoff time of 100 s for each run. Table 1 lists the final choices of the parameter values. From the table, it is concluded that an appropriate combination of the parameter values is p = 0.3, ts = 1000, $\mu = 2/3$, $lter = 5 \times 10^4$, $\rho = 0.95$, $\beta = 1$. The final version of MMAS-ML used in subsequent experiments was based on these values.

6.3. Computational results and comparison

The experimental results show that MMAS-ML obtains better solutions than CPLEX, GOPS, and RNKC for 136, 150, and 95 instances, respectively. Thus, the focus here is on comparing MMAS-ML against ABPSO and HBABC.

As Table 2 illustrates, MMAS-ML obtains 11 better solutions than ABPSO on k_{90} instances in terms of the "BEST" indicator, except for scpnrf1 and scpcyc10. For other instances where MMAS-ML and ABPSO can both find the same fitness values, MMAS-ML achieves a better average solution quality, indicating that MMAS-ML is more robust than ABPSO. In particular, the

Y. Zhou, X. Liu, S. Hu et al.

Table 2

Results of MMAS-ML, GOPS, KNRC, ABPSO, HEABC and CPLEX on instances with k_{90} .

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
scp42 192 195.42 174 0.00 193 3.20 193 3.22 193 193 125 scp42 193 <th< td=""><td>IME</td></th<>	IME
scp43 194 194 0.05 193 193 0.01 191 191 191 191 193 193 0.03 193 0.03 193 0.03 193 0.03 193 0.03 193 0.03 193 0.06 191 191 191 193 193 0.02 191 191 193 193 0.02 191 191 193 193 0.04 193 193 0.03 193 0.04 191 193 0.04 191 193 0.04 193 0.02 191 191 0.04 193 193 0.04 193 193 0.04 193 193 0.04 193 193 193 193 193 193 193 </td <td>2.58</td>	2.58
scp43 193 195.21 178 0.008 193 194 194 194 0.40 194 195 191 192 192 192 192 192 192 192 193 <th< td=""><td>).93</td></th<>).93
scp44 191 194,92 180 0.01 191 194 0.12 191 0.12 191 191 0.06 191 193 0.37 193 193 0.37 193 193 0.37 193 193 0.37 193 193 0.37 193 193 0.37 193 193 0.37 193 193 0.37 193 193 0.37 193 193 0.37 193 193 0.37 193 193 0.37 193 <td>1.09</td>	1.09
scp46 19.1/2 19.1/2 19.1/2 19.1/2 19.1/2 19.1/2 19.1/2 19.1/2 19.1/2 19.1/2 19.1/2 19.1/2 19.1/2 19.1 <td>1.90 1.20</td>	1.90 1.20
Sprage 191 192.5 176 0.011 191 13.69 191 191 0.03 191 191 0.02 191 191 scp448 190 195.46 178 0.009 192 192.1 192 192 0.21 192 193 <	1.50
scp48 190 195.46 178 0.009 192 190.8 3.12 192 192 0.21 192 192 0.20 192 193 193 193 193 193 193 193 193 193 193 193	1.01
scp49 192 194,11 183 0.012 192 191,1 17,09 192 192 1.04 192 1.91 1.13 192 1.04 192 1.13 192 1.13 192 1.13 192 1.13 192 1.13 192 1.13 192 1.13 192 1.13 192 1.13 192 1.13 192 1.13 192 1.13 192 1.13 192 1.13 192 1.13 192 1.13 192 1.13 192 1.13 192 1.13 192 1.14 194 2.26 194 194 2.26 194 194 2.26 194 194 0.27 194 194 0.14 194 1.14 194 1.14 1.14 194 1.14 <td>1.12</td>	1.12
scp410 192 193.2 180 0.009 192 191.1 17.09 192 1.04 192 1.13 192 1.13 192 1.13 192 1.14 192 1.14 192 1.13 192 1.13 192 1.14 194 1.25 193 192 1.14 194 1.29 194 194 1.23 194 194 1.24 194 1.24 194 1.24 1.94 1.94 1.25 194 194 1.23 194 194 1.25 194 194 1.25 194 194 1.25 194 194 1.25 194 194 1.25 194 194 1.25 194 194 1.25 194 194 1.27 194 194 0.15 194 194 1.25 194 194 1.27 194 194 1.27 194 194 1.24 194 1.34 194 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1).98
scp51 192 200 182 0.033 193 191.9 3.89 193 193 194 194 2.36 194 194 2.36 194 194 2.36 194 0.17 194 194 0.17 194 194 0.17 194 194 0.17 194 194 0.17 194 194 0.17 194 194 0.14 194 194 194 194 0.14 194 194 194 194 0.14 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 1	2.70
scp52 191 200 182 0.033 193 192.6 33.36 194 194 2.26 194 194 2.39 194 194 scp53 192 199.72 181 0.024 193 193 35.18 194 194 0.28 194 194 0.14 194 194 194 0.15 194 194 194 0.71 194 194 0.71 194 194 0.71 194 194 0.71 194 194 194 194 194 0.71 194 194 194 194 0.71 194 194 194 0.71 194 194 194 194 194 0.71 194	1.58
scp53 192 199.72 181 0.024 194 193.8 34.91 194 194 0.28 194 194 0.14 194 194 scp54 190 199.47 180 0.025 193 193.8 30.28 194 194 0.27 194 194 0.15 194 194 scp55 193 199.83 179 0.024 193 191.4 32.398 194 194 0.34 194 194 0.07 194 194 194 0.14 194 194 194 0.07 194 194 194 0.02 193 191.4 32.23 195 194 0.44 194 0.04 194	1.99
scp54 190 199.4/ 180 0.029 193 194 0.19 194 0.19 194 0.19 194 0.19 194 0.19 194 0.19 194 0.19 194 0.19 194 0.14 194 0.15 194 194 0.34 194 194 0.34 194 194 0.34 194 194 0.41 194 194 194 0.41 194 194 194 0.41 194 194 194 0.41 194 194 194 194 0.41 194 194 194 194 0.41 194	1.54
Scp55 192 200 180 1000 1000 193 193 194 194 0.27 194 194 0.13 194 194 0.14 194 0.17 194 194 0.07 194 194 0.07 194 194 0.07 194 194 0.07 194 194 0.07 194 194 0.07 194 194 0.07 194 194 0.07 194 194 0.07 194 194 0.07 195 0.30 195 195 195 103 134 194 0.04 0.02 193 192.1 54.77 194 194 0.02 194 194 0.04 194 194 0.04 194 194 0.04 194 194 194 194 0.04 194 194 194 0.04 194 194 0.02 194 194 0.02 194 194 0.02 194 194 0.04 106 106 106 107 106 106 106 106 106 106<	1.62
Skpb0 193 193 193 193 193 194 <th< td=""><td>1.03</td></th<>	1.03
Scp58 193 1991 1978 0.022 193 192.4 193 193 194 194 0.24 194 194 0.41 194 0.44 194 0.41 194 0.44 194 0.41 194 0.44 194 0.41 194 0.44 194 0.44 194 0.44 194 0.44 194 0.44 194 0.44 194 0.44 194 0.44 194 0.44 194 0.44 194 0.44 194 0.44 194 0.44 194	1.02
scp59 194 200 184 0.023 194 193 193 193 193 193 193 193 193 193 193 193 193 193 193 <	1.73
scp510 190 199.65 177 0.024 193 192.1 54.74 194 193.9 3.05 194 194 4.08 194 194 5 scp61 192 200 182 0.016 196 1.63 196 196 0.08 196 196 0.15 196 196 195 195 195 195 195 195 0.26 195 195 0.91 195 195 195 5 196 196 0.07 196 0.14 196 196 196 196 196 196 196 196 0.07 196 196 0.01 196	1.19
scp61 192 200 182 0.016 196 1.63 196 196 0.08 196 196 0.15 196 196 195 195 122 195 0.26 195 195 0.14 196 196 195 195 195 0.26 195 196 0.14 196 196 195 192 192 192 196 0.07 196 196 0.14 196 196 195 192 <td>2.94</td>	2.94
scp62 191 200 176 0.018 195 13.28 195 195 0.26 195 195 0.91 195 195 195 scp63 194 200 188 0.02 196 196 3.35 196 196 0.07 196 196 0.14 196 196 192 192 192 0.09 192 192 0.09 192 192 0.09 192 192 0.09 192 192 0.09 192 192 0.09 192 192 0.09 192 192 0.09 192 192 0.09 192 192 0.09 192 192 0.09 192 192 0.09 192 192 0.09 192 192 0.09 192 192 0.09 192 192 0.09 192 192 0.09 192	1.56
scp63 194 200 188 0.02 196 196 3.35 196 196 0.07 196 196 0.14 196 196 195 scp64 187 200 175 0.025 192 192 5.66 192 192 0.09 192 192 0.09 192 192 0.60 196 196 195 5.66 192 192 0.09 192 0.60 196 196 0.34 196 196 0.60 196 196 196 196 5.91 289 289 5.91 289 289 5.91 289 289 289 18.3 300 264 0.085 288 289 289 15.02 289	1.87
scp64 187 200 175 0.025 192 192 5.66 192 192 0.09 192 192 0.09 192 192 0.09 192 192 0.09 192 192 0.09 192 192 0.09 192 192 0.09 192 192 0.09 192 192 0.09 192 192 0.09 192 192 0.09 192 192 0.09 192 192 0.09 192 192 0.09 192 192 0.09 192 192 0.09 192 192 0.09 192 192 0.00 196 196 0.34 196 196 0.34 196 196 0.34 196 196 0.34 196 1697 189 189	1.35
scpb5 193 200 179 0.026 196 195.8 23.83 196 196 0.34 196 196 0.60 196 189 189 189 189	1.30
scpal 283 300 263 0.073 288 280.8 49.81 289 289.9 7.34 289 289 5.91 289 289 scpal scpal 283 300 264 0.085 288 280.6 19.89 289 289 15.02 289 289 3.28 289 289 289 3.28 289 289 289 3.28 289 289 289 3.28 289 289 289 3.28 289 289 289 3.28 289 289 289 3.28 289 289 289 289 0.56 289 289 289 280 0.66 288 288 0.12 288 288 280 290 290 0.68 290 290 290 290 0.68 290 290 290 290 286 300 276 0.208 295 295 295 0.66 295 295 0.47 295 296 296 5.97 296 296 27.12 296 296 295	1.77
scpal 283 300 274 0.035 283 280 13.89 289 10.02 289 285 5.23 289 280 280 280 289 280 280 280 280 280 280 280 280 290 280 280 290 280 280 290 280 280 290	'.4/ 7.10
scpa4 283 300 264 0.08 286 26.5 288 288 0.14 285 285 0.14 285 285 0.14 285 285 0.14 285 285 0.14 285 285 0.14 285 285 0.14 285 285 0.14 285 285 0.14 285 285 0.15 285 285 285 0.14 285 285 0.12 288 288 0.1 285 286 0.0 289 288 1.102 290 290 0.68 290 290 0.68 290 290 295 295 295 295 296	2 90
scpat 286 300 266 0.097 289 288.4 11.02 290 290 0.87 290 296 2.02 296 296 295 295 295 295 295 295 295 295 296 296 296 296 296 296 296 296 296 295 295 295 295 295 295 295 295 296 296 296 296 296 296 296 296 296 296 296 296 295 295 295 295 295 295 295 295 295 295 295 296	292
scpb1 288 300 279 0.0167 296 295 35.59 296 296 1.63 296 296 2.02 296 296 295 296 296 297 296 296 296 297 296 296 296 297 295 295 1.61 295 294.3 1.48 295 295 1.61 295 294.3 1.48 295 295 3.61 391 391 391 344 295 295 1.61 295 3.07 295 295 3.61 391 391 391 391 391 391 391 391 391 391 391 <td< td=""><td>2.96</td></td<>	2.96
scpb2 286 300 276 0.208 295 294.3 55.29 295 295 0.66 295 295 0.47 295 295 295 296 5.97 296 296 27.12 296 295 1.61 295 295 3.07 295 295 364 304 391 391 391 4.25 391 391 5.31 391 391 391 391 391 391 391 391 391 391 391 391 391 391 391 391 391	5.70
scpb3 287 300 274 0.207 295 293.5 85.89 296 296 5.97 296 296 27.12 296 295 296 295 296 295 296 295 296 295 296 295 296 295 296 295 301 295 295 295 301 391	5.39
scpb4 286 300 281 0.127 294 293 16.97 295 294.6 27.62 295 294.3 1.48 295 295 1.51 295 295 295 295 294.3 1.48 295 295 295 1.61 295 295 1.61 295 295 3.07 295 295 295 391 391 4.25 391 391 5.31 391 391 391 5.31 391 391 5.31 391 391 5.31 391 391 5.31 391 391 5.33 391 391 5.31 391 391 5.31 391 391 5.33 391 391 5.33 391 391 391 5.33 391 391 391 5.33 391 391 391 391 391 391 391 391 391 392 5.92 392 392 5.92 392 392 5.92 392 392 5.92 392 392 5.92 393 390.9 390.9 <	3.66
scpb5 285 300 278 0.112 295 294.2 43.28 295 295 1.61 295 295 3.07 295 295 295 3.07 295 295 295 3.07 295 295 295 3.07 295 295 295 3.07 295 295 295 3.07 295 295 295 3.07 295 295 295 3.07 295 295 295 3.07 295 295 295 3.07 295 295 3.07 295 295 3.07 295 295 3.07 295 295 3.07 295 391 391 3.07 295 391 391 3.07 295 391 391 3.07 295 391 391 3.07 391 392 392	14.67
scpc1 384 400 364 0.124 388 387.3 60.23 391 391 4.25 391 391 391 391 4 scpc2 380 400 365 0.181 388 387.4 46.00 391 391 7.24 391 391 12.56 391 391 5 scpc3 384 400 365 0.148 388 386.9 86.52 391 390.7 19.48 391 390.8 17.73 391 390.8 5 5 5 5 5 5 381 391 391 4.25 391 390.8 17.73 391 390.8 17.73 391 390.8 17.73 391 390.8 17.73 391 392 5.92 392 392 5.92 392 392 5.92 392 392 5.92 392 392 5.92 392 392 5.92 392 39.93 390.9 15.71 391 391 12.21 391 390.9 13 394.3 26.93	5.84
scpc2 380 400 365 0.181 388 387 46.00 391 391 7.24 391 391 12.50 391 391 scpc3 384 400 365 0.148 388 386.9 86.52 391 390.7 19.48 391 390.8 17.73 391 390.8 579 392 522 392 392 529 392	4.21 7 E 4
scpc4 384 400 363 0.126 388 387.4 49.40 392 392 2.03 392 5.92 392 392 5.93 392 392 5.93 392 392 5.92 392 392 392 5.93 392 5.93 394 390.9 1 scpc1 376 400 377 0.332 391.390.9 43.10 395 394 25.32 395 394.2 2.23 scpd1 376 400 377 0.332 391.390.9 43.10 395 394.3 26.93 395 394 25.32 395 394.2 2.23	1/9/
scpc5 383 400 364 0.157 387 386.5 49.30 391 390.7 15.71 391 391 12.21 391 390.9 scpd1 376 400 377 0.332 391 390.9 43.10 395 394.3 26.93 395 394 25.32 395 394.2 25.32 395 395 394.2 25.32 395 395 395 395 395 395 395 395 395 395 395	5 11
scpd1 376 400 377 0.332 391 390.9 43.10 395 394.3 26.93 395 394 25.32 395 394.2 25.32	17.40
	26.51
scpd2 377 400 365 0.367 392 390.8 57.69 393 392.6 27.24 393 392.7 46.20 393 393 2	23.95
scpd3 378 400 373 0.364 391 389.6 50.64 393 392.8 17.79 393 392.6 19.88 393 393	17.13
scpd4 379 400 368 0.391 390 389 41.95 393 392.1 43.38 393 392.1 35.59 393 392.8 4	40.32
scpd5 365 400 363 0.323 390 389.3 45.75 393 392.3 32.55 393 392 32.79 393 392.7	28.34
Scpmre1 438 500 404 1.463 485 484./ 29.58 488 487.2 2/.11 488 48/ 39./2 488 487.9 5 6 6 7 7 7 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8	17.07
Schliez 447 500 471 1.512 407 40.1 5.02 400 407.2 75.30 400 407 57.32 400 407.3 5 5 5 5 0 40 407 57.32 400 407.3 5 5 5 5 5 0 460 1 457 487 484 7 3158 489 487 1 5 6 37 487 487 3314 488 487 3	51 10
scentre4 456 500 473 1.545 487 485.6 46.50 488 487 45.47 488 486.8 38.35 488 487.4	55.57
scpnre5 451 500 470 1.48 487 485.1 46.92 488 487.1 73.79 487 486.9 32.04 488 487.3	59.87
scpnrf1 475 500 483 2.699 496 495 44.58 497 493.6 68.28 498 495.2 36.96 496 496 6	52.04
scpnrf2 475 500 489 2.544 495 494.5 61.19 497 494.7 20.00 497 494.7 38.17 497 496.2	1 7.21
scpnrf3 474 500 476 2.501 495 494.4 42.94 497 494 57.03 498 494.9 29.79 497 496.1	31.78
scpnrf4 482 500 484 2.351 495 494.5 69.25 497 494.3 23.68 496 494.6 52.12 497 496.4 2	28.00
scpnrt5 487 500 481 2.705 496 494.7 85.03 497 494.6 82.66 496 494.5 40.12 497 496 2	24.53
scpmrg1 952 1000 928 2.441 975 970.2 80.48 984 981.9 64.60 984 982.2 35.76 984 981.8 3	38.04
scping2 /06 1000 955 2.000 971 909.1 05.36 304 962.1 50.66 304 362.0 50.02 304 962.3 ϵ	19.90
schnige 3-4 1000 327 51.140 371 3000 3.447 301 373.2 30.11 301 373.7 30.3 370 301.1 3 schnige 947 1000 925 2.514 971 968.6 57.61 981 9787 3972 982 979 932 973 982 980 9 7	15 87
scprrg5 945 1000 923 2.569 970 968.8 66.31 981 979.4 76.23 981 979.2 33.45 983 980.9 4	46.82
scpnrh1 836 1000 937 4.984 982 981 50.89 989 986.9 43.95 991 988.2 46.50 991 989.8	7.69
scpnrh2 844 1000 940 4.693 983 981.1 67.75 988 986.3 20.31 989 988.3 69.30 992 989.8	58.81
scpnrh3 849 1000 934 4.785 983 981 14.91 991 987.9 51.38 990 988.4 47.81 993 990.3 §	32.14
scpnrh4 931 1000 936 4.612 982 981 56.15 989 987.4 29.34 990 988.8 74.88 992 989.9 7	/1.99
scpnrh5 846 1000 937 4.899 983 9815 77.72 990 987.6 91.53 990 988.2 19.68 992 989.9 7	/3.04
seperint 504 506,94 479 0.095 504 504 0.80 504 504 0.02 504 504 0.00 504 504 204 205 205 205 205 205 205 205 205 205 205	2.97
sepertri 1011 1025 340 0.274 1011 1011 2005 1011 1011 0.05 1011 1011 0.49 1011 1011 5 sepertri 1967 2047 1632 22804 2021 2020 7 3051 2022 8 1	,)7 <u>/</u> 1
scpclr13 3839 4095 3388 17.764 4045 4043.8 29.41 4045 4045 2.11 4045 4045 13.00 4045 4045	15.99

(continued on next page)

proposed algorithm performs well on the "scpnrg" and "scpnrh" test suits. The results on k_{95} instances are given in Table 3. The contrasting experiments show that MMAS-ML outperforms

ABPSO on 14 instances and achieves the same performance for the remaining instances. As the coverage ratio of the problem increases, the superiority of MMAS-ML becomes more distinct.

Table 2 (continued).

Eg	CPLEX GOPS			RNKC			ABPSO			HBABC			MMAS-ML			
	LB	UB	BEST	TIME	BEST	AVG	TIME	BEST	AVG	TIME	BEST	AVG	TIME	BEST	AVG	TIME
scpcyc06	226	239.4	214	0.003	227	227	4.96	227	227	0.10	227	227	0.00	227	227	1.71
scpcyc07	639	672	593	0.019	634	632.8	66.42	642	642	12.24	642	642	0.01	642	642	0.49
scpcyc08	1661	1792	1567	0.276	1677	1674.3	86.19	1700	1692	95.82	1711	1704.3	31.42	1711	1697.7	48.65
scpcyc09	4016	4608	3947	2.241	4239	4235.3	80.81	4317	4316.4	24.44	4349	4348.2	60.52	4318	4316.8	1.54
scpcyc10	9185	11520	9918	9.308	10702	10687.2	13.48	11004	10 980.8	82.93	10978	10967.3	53.38	10 980	10958.8	50.23
scpcyc11	13287	28 160	23986	38.85	25913	25 900.8	70.09	26 5 4 2	26 497.5	96.60	26 583	26 578.1	68.94	26 6 49	26569	63.37
Avg	817	1088.09	954.93	2.04	1031	1029.31	38.17	1046	1044.81	22.46	1047	1046.42	18.11	1048	1045.99	21.2

Table 3Results of MMAS-ML, GOPS, RNKC, ABPSO, HBABC and CPLEX on instances with k_{95} .

Eg	CPLEX		GOPS RNKC					ABPSO H			HBABC	НВАВС			MMAS-ML		
	LB	UB	BEST	TIME	BEST	AVG	TIME	BEST	AVG	TIME	BEST	AVG	TIME	BEST	AVG	TIME	
scp41	196	200	177	0.01	197	196.1	19.85	197	197	0.75	197	197	0.40	197	197	1.00	
scp42	198	198	183	0.009	197	197	6.17	198	198	0.32	198	198	0.14	198	198	0.99	
scp43	197	200	182	0.01	197	197	2.30	198	198	1.93	198	198	0.15	198	198	2.25	
scp44	194	199.89	183	0.01	195	194.4	23.33	196	196	0.21	196	196	0.12	196	196	1.04	
scp45	196	200	183	0.009	197	196.2	5.89	197	197	0.38	197	197	0.24	197	197	1.06	
scp46	196	199.11	182	0.011	196	195.6	30.49	196	196	0.10	196	196	0.02	196	196	0.96	
scp47	196	198.38	180	0.009	196	195.9	29.79	196	196	0.33	196	196	0.02	196	196	0.97	
scp48	196	199.89	182	0.01	196	195.1	21.60	190	196	0.23	196	190	0.13	190	196	1.02	
scp45	190	199.54	107	0.009	190	195.7	48.06	190	190	0.15	190	190	0.00	190	190	0.95	
scp410	194	200	184	0.019	196	194.3	443	196	196	5.36	196	196	4.63	196	196	2.78	
scp52	195	200	184	0.025	196	195.1	19.71	196	196	0.36	196	196	0.65	196	196	1.85	
scp53	194	200	183	0.024	196	196	33.66	196	196	0.15	196	196	0.00	196	196	1.47	
scp54	195	200	182	0.021	196	195.1	2.55	196	196	0.29	196	196	0.05	196	196	1.54	
scp55	196	200	183	0.025	196	196	12.76	197	197	15.50	197	197	37.04	197	196.7	16.97	
scp56	195	200	181	0.027	196	195.3	82.48	196	196	0.36	196	196	0.31	196	196	1.59	
scp57	196	200	185	0.022	197	196.1	32.36	197	197	0.44	197	197	0.28	197	197	1.83	
scp58	193	200	180	0.023	196	194.6	36.97	196	196	0.51	196	196	0.61	196	196	1.65	
scp59	193	200	184	0.029	197	196.8	34.38	197	197	0.52	197	197	0.23	197	197	1.81	
scp510	194	200	180	0.027	195	194.6	47.99	196	196	0.25	196	196	0.39	196	196	1./4	
scp67	197	200	180	0.029	199	199	3.97 20.46	199	199	0.28	199	199	0.41	199	199	1.05	
scp62	194	200	100	0.031	190	197.1	47.03	198	190	0.91	198	190	0.73	190	190	1.92	
scp64	192	200	178	0.035	196	190.5 196	16.62	196	196	0.36	196	196	0.99	196	196	1.76	
scp65	196	200	182	0.035	198	198	10.44	198	198	0.11	198	198	0.14	198	198	1.50	
scpa1	288	300	269	0.103	293	292.2	37.11	295	294.8	23.22	295	294.9	18.53	295	295	3.78	
scpa2	288	300	271	0.097	293	292.2	35.71	295	295	7.04	295	295	7.43	295	295	3.14	
scpa3	290	300	278	0.089	294	292.8	75.27	295	295	0.63	295	295	0.66	295	295	3.01	
scpa4	292	300	269	0.081	293	292.3	30.48	294	294	0.62	294	294	0.20	294	294	3.03	
scpa5	290	300	272	0.08	294	293.6	28.24	296	296	5.68	296	296	6.57	296	296	6.98	
scpb1	287	300	283	0.232	299	297.6	51.17	299	299	2.28	299	299	3.72	299	299	6.11	
scpb2	293	300	279	0.178	298	297.5	37.86	299	299	14.76	299	298.7	30.15	299	299	8.35	
scpb3	290	200	2/8	0.205	297	290.5	44.03	299	299	9.00	299	298.7	30.29 17.96	299	299	9.51	
scpb4	207	300	203	0.230	298	290.0	40.09	299	296.2 208	1 55	299	296.1	6.65	299	290.9	5 5 8	
scpc1	387	400	371	0.235	394	392.6	89.07	397	396.9	36.58	397	396.8	34.11	397	396.8	14 00	
scpc2	388	400	371	0.208	394	392.8	28.02	397	396.9	40.79	397	396.7	30.18	397	397	10.32	
scpc3	389	400	370	0.271	394	392.6	39.91	397	396.3	27.31	397	396.6	21.21	397	396.7	22.82	
scpc4	387	400	371	0.237	394	393	67.58	397	397	2.36	397	397	5.59	397	397	4.31	
scpc5	391	400	370	0.234	394	392.4	96.28	397	396.3	30.44	397	396.4	19.61	397	396.3	15.44	
scpd1	382	400	381	0.428	396	395.1	81.44	398	398	11.93	398	397.7	49.28	398	398	12.04	
scpd2	385	400	371	0.47	395	394.4	47.45	397	396.5	55.72	397	396.3	15.71	397	397	18.93	
scpd3	385	400	378	0.489	394	393.6	36.10	397	396.3	21.93	397	396.2	36.56	397	396.7	30.18	
scpd4	381	400	3/4	0.347	394	393.1	57.45	397	396.2	43.60	397	395.9	53.31	397	396.6 206.5	33.35	
scpu5 scppre1	380 170	400 500	309 475	0.494 1 /0/	294 703	292.2 /01.5	49.70	397 405	290.5 707	22.01	397 405	703 3 290	37.14	397 405	390.3 404 4	43.79 52.04	
sconre?	470	500	477	1.554	492	4917	58.88	495	494	16.83	495	493.3	44 36	495	494 3	54.62	
scpnre3	449	500	477	1.331	492	491.5	48.41	495	493.7	22.65	494	493.6	28.07	495	494.6	63.06	
scpnre4	469	500	479	1.892	492	491.2	39.47	495	494.1	52.95	494	493.1	34.44	495	494.6	67.85	
scpnre5	469	500	478	1.228	492	491.3	60.58	495	493.7	70.08	495	493.4	60.69	495	494.3	49.46	
scpnrf1	488	500	492	3.777	500	499.3	26.71	500	499.3	23.56	500	499.6	56.39	500	500	25.53	
scpnrf2	491	500	495	3.81	500	499.6	39.27	500	499.7	26.14	500	499.2	31.13	500	500	38.72	
scpnrf3	488	500	484	3.788	500	499.4	40.80	500	499.8	24.76	500	498.9	65.39	500	500	57.46	
scpnrf4	483	500	492	2.764	500	499.4	26.81	500	499.9	21.71	500	499.2	46.56	500	500	41.56	
scpnrf5	496	500	489	3.241	500	499.8	37.14	500	499.5	17.13	500	499	39.96	500	500	51.79	
scpnrg1	964	1000	942	3.998	984	981.9	68.28	994	992.5	39.83	995	993	62.52	995	992.8	27.29	
scpnrg2	900	1000	940	3.4/I	982	981.2	J/.5U	993	992.4	02.45	992	995.4	52.25	992	992.9	30.80	

(continued on next page)

Moreover, compared with ABPSO on the AVG metric, MMAS-ML still confirms the robustness of the performance.

As for the comparison with HBABC, MMAS-ML outperforms on 12 k_{90} instances and 12 k_{95} instances, respectively (see Tables 2

Knowledge-Based Systems 239 (2022) 108000

Table 3 (continued).

Eg	CPLEX GOPS			RNKC	NKC			ABPSO			HBABC			MMAS-ML		
	LB	UB	BEST	TIME	BEST	AVG	TIME	BEST	AVG	TIME	BEST	AVG	TIME	BEST	AVG	TIME
scpnrg3	949	1000	942	3.067	983	981.6	58.95	992	990.3	10.05	993	991.6	61.89	993	991.7	39.88
scpnrg4	959	1000	934	2.583	983	981.4	43.25	991	990.1	30.78	995	991.6	50.17	994	991.4	35.13
scpnrg5	836	1000	937	3.048	982	981.3	23.58	992	990.1	21.98	992	991.3	42.44	993	991.4	45.29
scpnrh1	843	1000	944	7.425	987	986.3	30.34	993	991.2	4.60	995	993.3	79.80	996	994.4	59.51
scpnrh2	851	1000	946	7.941	988	986.5	31.98	993	991.2	2.65	994	992.3	42.72	995	994.1	52.87
scpnrh3	856	1000	941	7.881	988	986.6	18.55	994	991.8	16.16	995	993.1	49.91	996	994	59.77
scpnrh4	863	1000	942	6.752	989	987.3	75.73	994	991.3	8.21	994	993	78.73	996	994.5	44.86
scpnrh5	859	1000	943	7.385	988	986.4	12.13	993	991.4	1.92	994	992.8	29.57	995	994.3	43.74
scpclr10	509	510	484	0.134	509	509	2.41	509	509	0.06	509	509	0.00	509	509	2.84
scpclr11	1015	1223	948	0.614	1015	1014.8	45.88	1015	1015	0.03	1015	1015	0.00	1015	1015	6.78
scpclr12	1978	2047	1638	19.315	2027	2026.3	57.56	2031	2031	0.87	2031	2031	4.59	2031	2031	18.07
scpclr13	3886	4095	3443	17.526	4055	4053.7	47.23	4063	4058.2	32.62	4057	4057	50.54	4063	4059.3	66.80
scpcyc06	234	240	220	0.004	235	235	16.99	235	235	0.10	235	235	0.00	235	235	0.49
scpcyc07	649	672	605	0.016	649	647	38.14	658	658	5.39	658	658	1.34	658	658	2.50
scpcyc08	1720	1792	1601	0.265	1715	1712.8	16.73	1744	1740.2	42.04	1752	1747.5	23.47	1752	1744	15.31
scpcyc09	4022	4608	4042	1.511	4353	4346.2	27.26	4444	4421.5	9.14	4461	4455	18.58	4468	4454.1	45.56
scpcyc10	9626	11520	10 15 1	8.791	10956	10945.3	49.21	11256	11 170.9	70.15	11265	11249.5	48.28	11292	11265	69.73
scpcyc11	13893	28 160	24563	41.837	26 5 46	26 524.7	78.10	27 267	27 245.9	85.53	27 314	27 302	52.54	27 315	27 243.9	61.05
Avg	838.36	1091.47	973.43	2.32	1049.19	1047.9	38.77	1066.47	1064.25	15.81	1067.61	1066.66	22.53	1068.27	1066.33	21.06

Table 4

Comparative results of MMAS-ML, RWLS and uSLC on k_{90} instances.

Eg	K90	RWLS			uSLC			MMAS-ML			
		BEST	AVG	TIME	BEST	AVG	TIME	BEST	AVG	TIME	
scp41	34	186	186	0.021	186	186	0.02	193	193	2.58	
scp42	33	186	186	0.02	186	186	0.02	193	193	0.93	
scp43	34	186	186	0.021	186	186	0.02	194	194	1.09	
scp44	34	184	184	0.02	184	184	0.02	191	191	0.96	
scp45	34	185	185	0.02	185	185	0.02	193	193	1.38	
scp46	33	181	181	0.02	181	181	0.02	191	191	0.95	
scp47	34	186	186	0.02	186	186	0.02	191	191	1.01	
scp48	33	186	186	0.021	186	186	0.02	192	192	1.12	
scp49	34	186	186	0.02	186	186	0.021	192	192	0.98	
scp410	34	186	186	0.02	186	186	0.02	192	192	2.70	
scp51	31	187	187	0.02	187	187	0.02	193	193	1.58	
scp52	31	188	188	0.021	188	188	0.02	194	194	1.99	
scp53	31	189	189	0.02	189	189	0.02	194	194	1.54	
scp54	31	188	188	0.021	188	188	0.02	194	194	1.77	
scp55	31	189	189	0.02	189	189	0.02	194	194	1.63	
scp56	31	185	185	0.02	185	185	0.02	194	194	1.74	
scp57	31	185	185	0.02	185	185	0.02	195	195	1.92	
scp58	31	183	183	0.02	183	183	0.02	194	194	1.73	
scp59	32	190	190	0.021	190	190	0.021	194	194	1.19	
scp510	31	183	183	0.02	183	183	0.02	194	194	2.94	
scp61	19	190	190	0.02	190	190	0.02	196	196	1.56	
scp62	18	191	191	0.021	191	191	0.02	195	195	1.87	
scp63	19	190	190	0.02	190	190	0.02	196	196	1.35	
scp64	18	191	191	0.02	191	191	0.02	192	192	1.30	
scp65	19	192	192	0.02	192	192	0.02	196	196	1.77	
scpa1	34	280	280	0.02	280	280	0.022	289	289	7.47	
scpa2	34	281	281	0.021	281	281	0.02	289	289	7.19	
scpa3	34	280	280	0.02	280	280	0.022	289	289	2.90	
scpa4	33	282	282	0.021	282	282	0.02	288	288	2.92	
scpa5	34	281	281	0.022	281	281	0.021	290	290	2.96	
scpb1	20	287	287	0.028	287	287	0.027	296	296	5.70	
scpb2	20	294	294	0.027	294	294	0.029	295	295	5.39	
scpb3	20	292	292	0.027	292	292	0.026	296	296	0.00	
scpb4	20	289	289	0.029	289	289	0.028	295	295	14.67	
scpb5	20	287	287	0.028	287	287	0.027	295	295	5.84	
scpc I	39	381	381	0.024	381	381	0.026	391	391	4.21	
scpc2	39	383	383	0.026	383	383	0.026	391	391	/.54	
scpc3	39	382	382	0.028	382	382	0.023	391	390.8	14.84	
sepc4	39 20	38U 201	38U 201	0.028	38U 201	38U 201	0.024	592 201	592 200 0	0.11 17.40	
scpco	ວອ ວວ	201 205	20 I 20 E	0.024	201 205	201 205	0.020	20E	2012 2012	17.40	
separ	22	282 297	202	0.039	383 207	282 287	0.039	393 202	594.Z	20.51	
scpa2	22	38/ 296	38/ 296	0.039	38/ 20C	38/ 296	0.036	293 202	292 202	23.95	
sepus	22	206	00C	0.020	300 20C	200	0.04	202	202 0 202 0	17.15	
scpu4	22 22	000	000	0.039	200	200	0.020	202	ンゴム.ð 202 7	40.52	
scpu5	22 14	284 480	284 490	0.039	204 490	284 480	0.039	766	532./ /97.0	20.04	
schillet	14	4 0U	400	0.070	400	400	0.070	-100	H0/.J	39.00	

Table 4 (continued).

Eg	K90	RWLS			uSLC			MMAS-ML			
		BEST	AVG	TIME	BEST	AVG	TIME	BEST	AVG	TIME	
scpnre2	14	483	483	0.076	483	483	0.08	488	487.3	47.97	
scpnre3	14	483	483	0.077	483	483	0.076	488	487.3	51.10	
scpnre4	14	483	483	0.076	483	483	0.077	488	487.4	55.57	
scpnre5	14	483	483	0.078	483	483	0.075	488	487.3	59.87	
scpnrf1	9	491	491	0.137	491	491	0.139	496	496	62.04	
scpnrf2	9	491	491	0.134	491	491	0.137	497	496.2	47.21	
scpnrf3	9	491	491	0.136	491	491	0.137	497	496.1	31.78	
scpnrf4	9	491	491	0.137	491	491	0.137	497	496.4	28.00	
scpnrf5	9	491	491	0.137	491	491	0.139	497	496	24.53	
scpnrg1	55	967	967	0.076	967	967	0.075	984	981.8	38.04	
scpnrg2	55	970	970	0.076	970	970	0.077	984	982.5	49.96	
scpnrg3	55	969	969	0.074	969	969	0.074	983	981.1	37.29	
scpnrg4	55	964	964	0.076	964	964	0.079	982	980.9	45.87	
scpnrg5	55	964	964	0.077	964	964	0.076	983	980.9	46.82	
scpnrh1	31	982	982	0.151	982	982	0.149	991	989.8	77.69	
scpnrh2	31	982	982	0.147	982	982	0.149	992	989.8	68.81	
scpnrh3	31	982	982	0.15	982	982	0.148	993	990.3	82.14	
scpnrh4	31	982	982	0.146	982	982	0.15	992	989.9	71.99	
scpnrh5	31	982	982	0.149	982	982	0.15	992	989.9	73.04	
scpclr10	23	494	494	0.02	494	494	0.02	504	504	2.97	
scpclr11	21	985	985	0.021	985	985	0.021	1011	1011	5.55	
scpclr12	21	1987	1987	0.047	1987	1987	0.045	2023	2022.8	22.41	
scpclr13	21	4001	4001	0.099	4001	4001	0.1	4045	4045	45.99	
scpcyc06	54	224	224	0.058	222	222	0.02	227	227	1.71	
scpcyc07	130	639	639	3.618	618	618	0.02	642	642	0.49	
scpcyc08	308	1689	1688.2	15.406	1624	1624	0.02	1711	1697.7	48.65	
scpcyc09	695	4299	4297.1	49.726	4245	4245	0.032	4318	4316.8	1.54	
scpcyc10	1618	10 900	10895.1	76.027	10 590	10 590	0.062	10980	10959	50.23	
scpcyc11	3571	26 394	26 38 1.8	90.206	25 948	25 948	0.173	26649	26 569	63.37	
Avg		1034.45	1034.19	3.18	1022.48	1022.48	0.05	1047.9	1045.99	21.20	

Table 5

Comparative results of MMAS-ML, RWLS and uSLC on $k_{\rm 95}$ instances.

Eg	K95	RWLS			uSLC			MMAS-MI	L	
		BEST	AVG	TIME	BEST	AVG	TIME	BEST	AVG	TIME
scp41	36	190	190	0.02	190	190	0.02	197	197	1.00
scp42	35	190	190	0.02	190	190	0.021	198	198	0.99
scp43	36	190	190	0.02	190	190	0.02	198	198	2.25
scp44	36	188	188	0.02	188	188	0.02	196	196	1.04
scp45	36	189	189	0.02	189	189	0.02	197	197	1.06
scp46	35	186	186	0.02	186	186	0.02	196	196	0.96
scp47	36	190	190	0.02	190	190	0.02	196	196	0.97
scp48	35	190	190	0.02	190	190	0.02	196	196	1.02
scp49	36	190	190	0.02	190	190	0.02	196	196	0.93
scp410	36	190	190	0.02	190	190	0.021	196	196	0.99
scp51	32	190	190	0.021	190	190	0.02	196	196	2.78
scp52	32	190	190	0.021	190	190	0.02	196	196	1.85
scp53	32	191	191	0.02	191	191	0.02	196	196	1.47
scp54	32	190	190	0.02	190	190	0.021	196	196	1.54
scp55	32	191	191	0.02	191	191	0.02	197	196.7	16.97
scp56	32	187	187	0.02	187	187	0.02	196	196	1.59
scp57	32	188	188	0.02	188	188	0.02	197	197	1.83
scp58	32	186	186	0.02	186	186	0.021	196	196	1.65
scp59	33	192	192	0.02	192	192	0.02	197	197	1.81
scp510	32	186	186	0.02	186	186	0.02	196	196	1.74
scp61	20	193	193	0.02	193	193	0.02	199	199	1.63
scp62	19	194	194	0.02	194	194	0.02	198	198	1.92
scp63	20	193	193	0.02	193	193	0.02	199	199	1.65
scp64	19	195	195	0.02	195	195	0.02	196	196	1.76
scp65	20	195	195	0.02	195	195	0.02	198	198	1.50
scpa1	36	286	286	0.02	286	286	0.021	295	295	3.78
scpa2	36	287	287	0.02	287	287	0.022	295	295	3.14
scpa3	36	286	286	0.02	286	286	0.021	295	295	3.01
scpa4	35	288	288	0.02	288	288	0.021	294	294	3.03
scpa5	36	287	287	0.02	287	287	0.02	296	296	6.98

(continued on next page)

and 3). Note that MMAS-ML is inferior to HBABC in four instances, but it achieves better average fitness values in half of these instances (scpnrf1 and scpnrf3). It is also observed that MMAS-ML outperforms HBABC on 24 k_{90} instances and 30 k_{95} instances on the AVG metric.

To make the experimental results convincing, the Superior-Draw-Inferior (S-D-I) values of the results are calculated compared to RNKC, ABPSO and HBABC with the Mann–Whitney U test [36]. Superior, Draw, and Inferior indicate the number of instances the compared algorithms perform better, equivalent, or

Υ.	Zhou,	Х.	Liu,	S.	Ни	et	al.
----	-------	----	------	----	----	----	-----

Table 5 (continued).

Eg	K95	RWLS			uSLC			MMAS-ML		
		BEST	AVG	TIME	BEST	AVG	TIME	BEST	AVG	TIME
scpb1	21	292	292	0.029	292	292	0.027	299	299	6.11
scpb2	21	297	297	0.028	297	297	0.028	299	299	8.35
scpb3	21	296	296	0.027	296	296	0.029	299	299	9.51
scpb4	21	293	293	0.027	293	293	0.026	299	298.9	32.78
scpb5	21	291	291	0.029	291	291	0.028	298	298	5.58
scpc1	41	389	389	0.024	389	389	0.026	397	396.8	14.00
scpc2	41	389	389	0.024	389	389	0.024	397	397	10.32
scpc3	41	388	388	0.027	388	388	0.025	397	396.7	22.82
scpc4	41	388	388	0.026	388	388	0.025	397	397	4.31
scpc5	41	387	387	0.024	387	387	0.025	397	396.3	15.44
scpd1	23	390	390	0.039	390	390	0.04	398	398	12.04
scpd2	23	391	391	0.039	391	391	0.038	397	397	18.93
scpd3	23	390	390	0.038	390	390	0.038	397	396.7	30.18
scpd4	23	391	391	0.039	391	391	0.039	397	396.6	33.35
scpd5	23	389	389	0.038	389	389	0.04	397	396.5	45.79
scpnre1	15	488	488	0.077	488	488	0.08	495	494.4	52.94
scpnre2	15	489	489	0.079	489	489	0.08	495	494.3	54.62
scpnre3	15	489	489	0.078	489	489	0.078	495	494.6	63.06
scpnre4	15	489	489	0.078	489	489	0.077	495	494.6	67.85
scpnre5	15	489	489	0.079	489	489	0.08	495	494.3	49.46
scpnrf1	10	498	498	0.136	498	498	0.137	500	500	25.53
scpnrf2	10	498	498	0.138	498	498	0.136	500	500	38.72
scpnrf3	10	498	498	0.133	498	498	0.136	500	500	57.46
scpnrf4	10	498	498	0.136	498	498	0.137	500	500	41.56
scpnrf5	10	498	498	0.135	498	498	0.137	500	500	51.79
scpnrg1	58	980	980	0.079	980	980	0.077	995	992.8	27.29
scpnrg2	58	982	982	0.076	982	982	0.075	995	992.9	36.86
scpnrg3	58	982	982	0.075	982	982	0.076	993	991.7	39.88
scpnrg4	58	977	977	0.076	977	977	0.075	994	991.4	35.13
scpnrg5	58	9/7	977	0.078	977	9//	0.072	993	991.4	45.29
scpnrn I	32	987	987	0.149	987	987	0.15	996	994.4	59.51
scpnrn2	32	987	987	0.147	987	987	0.152	995	994.1	52.87
scpnrh4	32 22	987	987	0.151	987	987	0.151	990	994 004 F	39.77 44.96
scpnrh5	32 20	907	907	0.13	967	907	0.13	990	994.5	44.00
sepelr10	52 24	907 407	967 407	0.140	907 407	907 407	0.146	993 500	594.5	45.74
sepelr11	24	497	497	0.02	497	497	0.02	509 1015	309 1015	2.04 6.79
sepelr12	22	2000	2000	0.022	2000	2000	0.021	2021	2021	19.07
sepelr12	22	2000	2000	0.044	2000	2000	0.040	2031	2051	10.07 66.90
scpcur 15	57	4018	4010	0.099	4010 221	4016	0.101	4005	4039.3	00.00
scpcyc00	137	654	654	2 9/1	630	630	0.02	255 658	233 658	2.50
scheven8	325	1740	1738.8	38.63	1675	1675	0.02	1752	1744	2.50
scheveng	733	4458	4438.4	64 398	4359	4359	0.02	4468	4454 1	45 56
scheve10	1708	11 193	11 175 3	80 528	10.860	10.860	0.064	11 292	112654	69.73
scpcyc10	3770	27 064	27.043	83 472	26 558	26 558	0.181	27 315	27 243.9	61.05
	3//0	2,004	2,015	0.05	20330	2000	0.101	27 913	400000	01.05
Avg		1055.51	1054.71	3.65	1041.92	1041.92	0.05	1068	1066.33	21.06

Table 6

Summary of comparative results of MMAS-ML, RWLS, uSLC, RNKC, ABPSO and HBABC.

Instances	MMAS-ML vs.	RWLS	uSLC	RNKC	ABPSO	HBABC
	#Better	75	75	50	11	12
K00	#Draw	0	0	25	62	60
100	#Worse	0	0	0	2	3
	#Better	75	75	45	14	12
K95	#Draw	0	0	30	61	62
1.55	#Worse	0	0	0	0	1

worse than MMAS-ML. Finally, the S-D-I of RNKC was 0-55-95, while that of ABPSO was 2-123-25, and the S-D-I of HBABC was 4-122-24, which verifies the effectiveness of MMAS-ML.

6.4. Further comparison with MSCP's algorithms

In this subsection, MMAS-ML is further compared with two state-of-the-art algorithms for the minimum set cover problem, including uSLC [25] and RWLS [26]. By changing the constraint of the feasible solution, the MSCP algorithms above can be modified to solve MKCP. Specifically, the feasible constraint for MSCP is

to cover all rows. Thus, the solution of the MSCP algorithm is acceptable when all rows are covered. For MKCP, only k columns are allowed to cover as many rows as possible. Therefore, the solution of MKCP algorithms is judged to be feasible provided k columns are selected. The detailed comparative results, together with the statistical summary of the comparisons, are displayed in Tables 4–6.

Once again, MMAS-ML outperforms uSLC and RWLS in terms of solution quality in all instances. The experimental results show that the integration model of swarm intelligence and heuristic rules has a significant effect on MKCP. At the same time, the contrast experiment also indicates that the algorithms designed for MSCP may not fit MKCP because of the different characteristics of the problems.

MKCP is a generalization of MSCP. Thus, whether the proposed MMAS-ML can find a valid solution to MSCP if the given *k* is equal to the best-known solution for MSCP is further discussed. The experimental settings are the same as those of Section 6.1, except for the predefined values of *k*, which are derived from the results of RWLS [26]. In addition, it takes RWLS more than 100 s to find the best solutions of some difficult instances (e.g. 6437.21 s for NRE2). However, MMAS-ML is still executed with a time limit of 100 s to evaluate efficiency in solving MSCP. Fig. 2 shows the

Table 7

Comparison between MMAS-ML and three variants on k_{90} instances.

	ROU	MMAS_C	iu tillee va	IIdiits Oli Kg	MI			ΜΝΛΔς_Ν	Л		ΜΜΔς_Ν	11	
Lg	K50	REST	AVC	TIME	REST	AVC	TIME	BEST	AVC	TIME	REST	AVC	TIME
son /1	24	102	102	4.00	100	100		100	100	0.00	102	102	2.59
scp41 scp42	34	193	193	4.88	188	188	0.00	188	188	0.00	193	193	2.58
scp42	34	194	194	1.05	190	190	0.00	193	190.4	0.00	194	194	1.09
scp44	34	191	191	1.56	191	186.2	0.08	186	185.3	0.00	191	191	0.96
scp45	34	193	193	2.72	191	191	0.00	192	191.4	0.00	193	193	1.38
scp46	33	191	191	1.37	186	186	0.00	189	187.3	0.00	191	191	0.95
scp47	34	191	191	1.57	186	186	0.00	187	186.6	0.00	191	191	1.01
scp48	33	192	192	1.92	187	187	0.00	189	187.8	0.00	192	192	1.12
scp49	34	192	192	1.44	187	187	0.00	189	187.6	0.00	192	192	0.98
scp410	34	192	192	2.67	189	189	0.00	189	189	0.00	192	192	2.70
scp51	31	195	195	2.57	191	191	0.00	192	191.4	0.00	195	193	1.58
scp52	31	194	194	2.59	191 194	190.5	0.20	192	189.9	0.00	194	194	1.55
scp54	31	194	194	2.62	194	191.9	0.17	193	192.8	0.00	194	194	1.77
scp55	31	194	194	2.58	191	191	0.00	191	191	0.00	194	194	1.63
scp56	31	194	194	2.76	191	191	0.00	191	191	0.00	194	194	1.74
scp57	31	195	195	2.98	191	191	0.00	191	191	0.00	195	195	1.92
scp58	31	194	194	2.72	194	186.8	0.02	189	187.6	0.00	194	194	1.73
scp59	32	194	194	2.21	191	191	0.00	194	192	0.00	194	194	1.19
scp510	31	194	194	4.05	188	188	0.00	190	188.3	0.00	194	194	2.94
scp61	19	196	190	2.27	193	193	0.00	195	194	0.00	190	196	1.50
scp62	10	195	195	2.79	195	192.2	0.20	194	192.7	0.00	195	195	1.07
scp64	18	192	192	2.78	188	188	0.00	192	189.8	0.00	192	192	1.30
scp65	19	196	196	2.50	191	191	0.00	195	192.6	0.00	196	196	1.77
scpa1	34	289	289	17.41	282	282	0.00	285	282.7	0.00	289	289	7.47
scpa2	34	289	289	12.63	282	282	0.00	286	285.5	0.00	289	289	7.19
scpa3	34	289	289	5.44	280	280	0.00	286	283.1	0.01	289	289	2.90
scpa4	33	288	288	4.55	281	281	0.00	286	284.3	0.01	288	288	2.92
scpa5	34	290	290	4.89	281	281	0.00	286	283.6	0.00	290	290	2.96
scpb1	20	296	290	10.79	290	290	0.00	291	290.5	0.01	290	296	5.70
scpb2 scpb3	20	295	295	9.55	294 294	294	0.00	294	294 294 1	0.01	295	295	5.59
scpb3	20	295	294.9	17.72	290	290	0.00	290	290	0.01	295	295	14.67
scpb5	20	295	295	9.71	290	290	0.00	291	290.4	0.01	295	295	5.84
scpc1	39	391	391	13.11	383	383	0.00	384	383.1	0.00	391	391	4.21
scpc2	39	391	391	20.15	382	382	0.00	387	384.5	0.01	391	391	7.54
scpc3	39	391	390.4	28.83	383	383	0.00	388	386.4	0.01	391	390.8	14.84
scpc4	39	392	392	11.47	381	381	0.00	387	384.6	0.01	392	392	6.11
scpc5	39	391	391	20.87	383	383	0.00	387	383.7	0.01	391	390.9	17.40
scpd1	22	303	394.1	33.67	387	387	0.00	388	387 3	0.01	303	394.2	20.31
scpd2	22	393	393	29.42	388	388	0.00	390	388 3	0.01	393	393	17 13
scpd4	22	393	392.6	33.11	386	386	0.00	388	386.2	0.01	393	392.8	40.32
scpd5	22	393	392.3	25.35	386	386	0.00	388	386.6	0.01	393	392.7	28.34
scpnre1	14	488	487.9	84.07	481	481	0.01	484	481.9	0.05	488	487.9	59.88
scpnre2	14	488	487.3	70.47	481	481	0.01	484	482.1	0.04	488	487.3	47.97
scpnre3	14	488	487.3	78.52	481	481	0.01	486	482.7	0.04	488	487.3	51.10
scpnre4	14	488	487.3	78.31	481	481	0.01	486	483.7	0.05	488	487.4	55.57
scpnre5	14	488	487.3	76.79	487	481.6	1.02	485	483	0.05	488	487.3	59.87
scpnrf?	9	496	495.8	50.54	495	493	11 75	494	493.1	0.10	490 497	496 2	02.04 47.21
scpnrf3	9	497	495.7	58.88	496	492.9	21.43	495	492.7	0.10	497	496.1	31.78
scpnrf4	9	497	495.5	44.96	496	492.7	9.73	494	492.4	0.12	497	496.4	28.00
scpnrf5	9	496	495.7	34.85	496	492.7	7.34	495	492.9	0.12	497	496	24.53
scpnrg1	55	984	982.4	57.86	972	972	0.01	975	972.9	0.03	984	981.8	38.04
scpnrg2	55	983	982.1	58.96	984	975	19.12	977	975.2	0.04	984	982.5	49.96
scpnrg3	55	983	979.8	48.69	980	968.3	3.71	972	969.7	0.04	983	981.1	37.29
scpnrg4	55	982 001	980.4	45.02	981	968.4	3.61	9/2	970	0.03	982	980.9	45.87
scpiifg5 scparh1	22 21	98 I 001	980.2 980 7	53.62 63.00	978 087	908.1 981	5.97 0.02	972	970 QQ/1	0.04	985 001	980 8 980 8	40.82 77.60
scpnrh7	31	991	989.7	77.62	984	984	0.02	984	984	0.07	992	989.8	68.81
scpnrh3	31	992	989.8	72.35	984	984	0.02	984	984	0.07	993	990.3	82.14
scpnrh4	31	992	990.4	68.22	984	984	0.02	985	984.1	0.08	992	989.9	71.99
scpnrh5	31	991	989.9	67.43	984	984	0.02	985	984.1	0.08	992	989.9	73.04
scpclr10	23	504	504	2.82	504	500.5	0.00	504	500.8	0.00	504	504	2.97
scpclr11	21	1011	1011	9.11	1011	1011	0.08	1011	1005.5	0.02	1011	1011	5.55
scpclr12	21	2023	2023	32.03	2023	2011.8	7.95	2018	2011.9	0.03	2023	2022.8	22.41
scpclr13	21	4045	4045	68.03	4045	4045	2.34	4029	4024.5	0.14	4045	4045	45.99

(continued on next page)

coverage rate of the elements with a given k by MMAS-ML for MSCP. It is observed that MMAS-ML can find the full coverage of the set cover problem in 68 out of 75 instances. For the remaining

seven instances, the proposed algorithm can cover at least 98.93% of the elements. Recall that the optimization of MSCP should pay special attention to the unique sets even if they contain a small

Y. Zhou, X. Liu, S. Hu	et al.	
------------------------	--------	--

Table 7 (continued).

Eg	K90	MMAS-G	MMAS-G			ML			MMAS-M			MMAS-ML		
		BEST	AVG	TIME	BEST	AVG	TIME	BEST	AVG	TIME	BEST	AVG	TIME	
scpcyc06	54	227	227	3.03	227	224.2	1.07	226	225.3	0.00	227	227	1.71	
scpcyc07	130	642	642	1.47	630	630	0.00	637	634.7	0.00	642	642	0.49	
scpcyc08	308	1700	1696.5	49.64	1696	1693.5	33.54	1686	1676.8	0.02	1711	1697.7	48.65	
scpcyc09	695	4326	4319.3	8.10	4318	4316.7	46.32	4258	4245.2	0.10	4318	4316.8	1.54	
scpcyc10	1618	10 980	10968.2	29.96	10742	10742	0.26	10742	10742	0.51	10980	10958.8	50.23	
scpcyc11	3571	26 587	26 573.1	59.79	26534	26 325.4	42.95	26 133	26 130.9	3.00	26649	26569	63.37	
Avg		1046.93	1046.11	25.51	1038.72	1034.56	2.92	1033.07	1031.23	0.07	1047.89	1045.99	21.2	

Table 8

Comparison between MMAS-ML and three variants on k_{95} instances.

Eg	K95	MMAS-C	3		ML			MMAS-I	M		MMAS-I	ML	
		BEST	AVG	TIME	BEST	AVG	TIME	BEST	AVG	TIME	BEST	AVG	TIME
scn41	36	197	197	1.68	197	193.5	0.14	196	192.9	0.00	197	197	1.00
scp42	35	198	198	1.50	198	197.2	0.07	197	195.4	0.00	198	198	0.99
scp43	36	198	198	2.67	198	195.3	0.02	196	195.1	0.00	198	198	2.25
scp44	36	196	196	1.78	196	196	0.28	192	191	0.00	196	196	1.04
scp45	36	197	197	2.00	197	196.2	0.22	196	195.6	0.00	197	197	1.06
scp46	35	196	196	1.29	196	196	0.06	194	192.9	0.00	196	196	0.96
scp47	36	196	196	1.49	196	195.4	0.04	193	191.1	0.00	196	196	0.97
scp48	35	196	196	1.77	196	196	0.20	194	192.7	0.00	196	196	1.02
scp49	36	196	196	1.53	192	192	0.00	192	192	0.00	196	196	0.93
scp410	36	196	196	1.47	196	193.6	0.01	194	193.2	0.00	196	196	0.99
scp51	32	196	196	3.71	194	194	0.00	194	194	0.00	196	196	2.78
scp52	32	196	196	2.55	196	195.4	0.28	195	194.1	0.00	196	196	1.85
scp53	32	196	196	2.50	196	196	0.09	194	192.8	0.00	196	196	1.47
scp54	32	196	196	2.38	196	195.7	0.20	195	194.7	0.00	196	196	1.54
scp55	32	197	196.8	17.75	194	194	0.00	194	194	0.00	197	196.7	16.97
scp56	32	196	196	2.39	196	193.3	0.01	194	193.1	0.00	196	196	1.59
scp57	32	197	197	2.75	197	194.6	0.11	194	193.4	0.00	197	197	1.83
scp58	32	196	196	2.61	196	193.2	0.32	190	189.6	0.00	196	196	1.65
scp59	33	197	197	2.94	197	194.2	0.11	196	193.5	0.00	197	197	1.81
scp510	32	196	196	3.10	196	191.5	0.07	192	191.1	0.00	196	196	1.74
scp61	20	199	199	2.95	199	197.5	0.12	198	196.6	0.00	199	199	1.63
scp62	19	198	198	2.99	198	197.1	0.48	197	196.2	0.00	198	198	1.92
scp63	20	199	199	2.69	199	197.2	0.01	198	197.1	0.00	199	199	1.65
scp64	19	196	196	2.61	196	196	0.11	195	193.4	0.00	196	196	1.76
scp65	20	198	198	2.10	198	196.2	0.05	197	195.6	0.00	198	198	1.50
scpa1	36	295	295	8.20	295	294.3	14.59	292	290.2	0.00	295	295	3.78
scpa2	36	295	295	5.81	295	295	3.80	292	291.3	0.00	295	295	3.14
scpa3	36	295	295	5.03	295	295	1.82	291	289	0.00	295	295	3.01
scpa4	35	294	294	4.75	294	294	1.81	292	290.1	0.00	294	294	3.03
scpa5	36	296	296	9.26	296	295.1	10.34	293	291	0.01	296	296	6.98
scpb1	21	299	299	9.68	295	295	0.00	295	295	0.01	299	299	6.11
scpb2	21	299	299	14.05	299	297.2	0.22	298	297.1	0.01	299	299	8.35
scpb3	21	299	299	15.43	297	297	0.00	297	297	0.01	299	299	9.51
scpb4	21	299	298.5	26.49	299	295.7	10.26	295	294.4	0.01	299	298.9	32.78
scpb5	21	298	298	8.80	298	295.6	0.33	296	294.5	0.01	298	298	5.58
scpc1	41	397	396.7	34.72	397	389.8	0.66	391	389.2	0.01	397	396.8	14.00
scpc2	41	397	397	24.06	397	396	31.16	394	391.2	0.01	397	397	10.32
scpc3	41	397	396.4	12.89	397	396.1	29.49	394	392.3	0.01	397	396.7	22.82
scpc4	41	397	397	10.35	397	397	13.60	393	390.2	0.01	397	397	4.31
scpc5	41	397	396.4	25.68	397	392	12.86	391	389.5	0.00	397	396.3	15.44
scpd1	23	398	398	23.78	398	391.7	1.15	393	391.2	0.01	398	398	12.04
scpd2	23	397	397	39.06	397	393.5	3.54	393	392.3	0.01	397	397	18.93
scpd3	23	397	396.5	22.91	397	395.4	14.62	394	393.1	0.02	397	396.7	30.18
scpd4	23	397	396.5	30.33	396	391.8	6.39	392	390.4	0.01	397	396.6	33.35
scpd5	23	397	396.5	29.80	397	393.8	17.04	393	390.9	0.01	397	396.5	45.79
scpnrei	15	495	494.3	72.86	495	491.3	24.59	491	489.7	0.05	495	494.4	52.94
scpnre2	15	495	494.6	76.20	495	491.8	19.31	492	490.1	0.04	495	494.3	54.62
scpnre3	15	495	494.3	//.50	494	491.0	14.39	492	490.3	0.05	495	494.b	03.00 67.95
scpnre4	15	495	494.5	09.42	495	492.8	34.21	492	490.1	0.05	495	494.b	07.85 40.46
scpnre5	15	495	494.2	77.91	494	492.6	33./5 10.97	492	490.3	0.05	495	494.5	49.46
scpnrfl	10	500	500 400 0	50.10	500	498.9	19.87	499	498.6	0.09	500	500	25.53
scpnri2	10	500	499.9	50.94	498	498	0.01	498	498	0.08	500	500	58.72 57.40
scpnrf4	10	500	500	02.09	498	498	0.01	498 400	498 409 1	0.09	500	500	37.40 41.56
scpnrf4	10	500	300	44.49	500	498.2	0.54	499	498.1 409.1	0.09	500	500	41.50
scpiiii5	10	300	499.9	50.02	300	498.2	7.91	499	498.1	0.11	300 005	300	31./9 27.20
scpingi	20 E0	994	993.2 002.0	54.55 50.17	994	990	37.00	90/	985.4	0.03	992	992.8	27.29
scpnrg2	28 50	994	992.9	50.17	993	990.9	39.3/	988	986.4	0.03	995	992.9	30.80
scpnrg3	JQ	992	991.5	45.92	992	900.0	JJ.54	900	982.0	0.03	993	991./	29.88

Table 8 (continued).

Eg	K95	MMAS-G			ML			MMAS-M			MMAS-MI	_	
		BEST	AVG	TIME	BEST	AVG	TIME	BEST	AVG	TIME	BEST	AVG	TIME
scpnrg4	58	993	991.4	42.97	991	988.3	43.28	985	983.1	0.04	994	991.4	35.13
scpnrg5	58	993	991.6	46.24	993	989.8	32.76	985	982.9	0.04	993	991.4	45.29
scpnrh1	32	996	994.5	67.44	994	991.4	27.14	991	990.1	0.08	996	994.4	59.51
scpnrh2	32	995	994.6	61.90	994	991.5	31.44	991	990.2	0.09	995	994.1	52.87
scpnrh3	32	996	995	67.80	995	991	25.17	991	990	0.08	996	994	59.77
scpnrh4	32	996	994.5	72.19	994	991	30.18	991	990.2	0.09	996	994.5	44.86
scpnrh5	32	995	994.6	44.91	992	990.4	30.33	991	989.8	0.09	995	994.3	43.74
scpclr10	24	509	509	2.40	509	505.8	0.01	509	505.2	0.00	509	509	2.84
scpclr11	22	1015	1015	9.87	1015	1015	0.06	1010	1005.5	0.02	1015	1015	6.78
scpclr12	22	2031	2031	28.17	2031	2031	1.79	2031	2023.8	0.03	2031	2031	18.07
scpclr13	22	4063	4058.8	80.29	4059	4056.7	31.54	4048	4041.7	0.12	4063	4059.3	66.80
scpcyc06	57	235	235	0.85	235	235	0.02	235	232.7	0.00	235	235	0.49
scpcyc07	137	658	657.9	4.96	651	651	0.00	657	655.5	0.00	658	658	2.50
scpcyc08	325	1751	1746.9	38.10	1743	1743	0.97	1736	1718.9	0.03	1752	1744	15.31
scpcyc09	733	4465	4460.3	46.36	4456	4451.3	70.80	4394	4382.9	0.13	4468	4454.1	45.56
scpcyc10	1708	11258	11251.2	64.23	11234	11226	84.45	11 131	11083.5	0.66	11 292	11 265.4	69.73
scpcyc11	3770	27 300	27 270.9	60.59	27 254	27 134	74.08	26731	26728.3	3.07	27 315	27 243.9	61.05
Avg		1067.52	1066.62	26.13	1065.75	1062.28	12.33	1054.07	1051.61	0.07	1068.27	1066.33	21.06

Table 9

Comparison between MMAS-ML and two variants on k_{90} instances.

Eg	K90	MMAS-L			MMAS-W			MMAS-M	L	
		BEST	AVG	TIME	BEST	AVG	TIME	BEST	AVG	TIME
scp41	34	193	193	12.80	193	193	7.04	193	193	2.58
scp42	33	193	193	1.36	193	193	1.76	193	193	0.93
scp43	34	194	194	8.29	194	194	2.34	194	194	1.09
scp44	34	191	191	1.49	191	191	1.87	191	191	0.96
scp45	34	193	193	4.38	193	193	3.15	193	193	1.38
scp46	33	191	191	1.47	191	191	1.87	191	191	0.95
scp47	34	191	191	1.36	191	191	2.07	191	191	1.01
scp48	33	192	192	1.57	192	192	2.33	192	192	1.12
scp49	34	192	192	1.38	192	192	1.91	192	192	0.98
scp410	34	192	192	9.34	192	192	2.58	192	192	2.70
scp51	31	193	193	2.21	193	193	3.46	193	193	1.58
scp52	31	194	194	5.41	194	194	3.22	194	194	1.99
scp53	31	194	194	2.31	194	194	2.72	194	194	1.54
scp54	31	194	194	2.37	194	194	2.69	194	194	1.77
scp55	31	194	194	2.08	194	194	3.55	194	194	1.63
scp56	31	194	194	2.47	194	194	3.74	194	194	1.74
scp57	31	195	195	2.66	195	195	3.62	195	195	1.92
scp58	31	194	194	3.02	194	194	2.96	194	194	1.73
scp59	32	194	194	1.85	194	194	2.62	194	194	1.19
scp510	31	194	194	2.96	194	194	9.37	194	194	2.94
scp61	19	196	196	2.09	196	196	2.98	196	196	1.56
scp62	18	195	195	2.67	195	195	2.93	195	195	1.87
scp63	19	196	196	1.87	196	196	3.40	196	196	1.35
scp64	18	192	192	1.92	192	192	2.38	192	192	1.30
scp65	19	196	196	2.47	196	196	3.06	196	196	1.77
scpa1	34	289	289	10.07	289	289	14.07	289	289	7.47
scpa2	34	289	289	19.19	289	289	17.07	289	289	7.19
scpa3	34	289	289	4.41	289	289	6.04	289	289	2.90
scpa4	33	288	288	4.65	288	288	6.43	288	288	2.92
scpa5	34	290	290	3.59	290	290	6.69	290	290	2.96
scpb1	20	296	296	8.60	296	296	13.20	296	296	5.70
scpb2	20	295	295	8.32	295	295	13.21	295	295	5.39
scpb3	20	296	296	10.21	296	296	15.78	296	296	6.66
scpb4	20	295	295	15.12	295	295	24.11	295	295	14.67
scpb5	20	295	295	8.48	295	295	12.97	295	295	5.84
scpc1	39	391	391	9.40	391	391	14.64	391	391	4.21
scpc2	39	391	391	13.78	391	390.9	25.24	391	391	7.54
scpc3	39	391	390.8	15.69	391	390.6	22.63	391	390.8	14.84
scpc4	39	392	392	6.94	392	392	28.56	392	392	6.11
scpc5	39	391	391	7.13	391	390.6	33.83	391	390.9	17.40
scpd1	22	395	394.1	21.80	395	394.1	35.32	395	394.2	26.51
scpd2	22	393	393	18.31	393	392.7	39.39	393	393	23.95
scpd3	22	393	393	25.84	393	392.8	35.54	393	393	17.13
scpd4	22	393	392.8	29.87	393	392.3	39.90	393	392.8	40.32
scpd5	22	393	392.4	22.91	393	392	25.78	393	392.7	28.34
scpnre1	14	488	488	71.26	488	487.3	79.79	488	487.9	59.88
scpnre2	14	488	487.4	71.87	488	486.8	72.28	488	487.3	47.97

Table 9 (continued).

BEST AVG TIME BEST AVG AVG AVG AVG scpnre3 14 488 487.2 62.62 488 487.1 68.84 488 487.3 scpnre4 14 488 487.4 68.45 487 486.9 60.94 488 487.4 scpnre5 14 488 487.4 68.45 487 486.8 68.29 488 487.3 scpnrf1 9 496 495.9 47.23 495 494.9 68.47 496 496.2 scpnrf2 9 497 496.2 41.05 497 495.5 33.47 497 496.2 scpnrf3 9 497 496.3 32.08 497 495.5 33.47 497 496.4 scpnrf5 9 496	TIME 51.10 55.57 59.87
scpnre314488487.262.62488487.168.84488487.3scpnre414488487.364.76487486.960.94488487.4scpnre514488487.468.45487486.868.29488487.3scpnrf19496495.947.23495494.968.47496496scpnrf2949749638.33496495.337.66497496.2scpnrf39497496.241.05497495.533.47497496.1scpnrf59497496.332.08497495.330.99497496.4scpnrf5949749630.04496495.527.76497496scpnrg155983982.138.95983979.458.08984981.8scpnrg255983982.339.8898197949.05984982.5	51.10 55.57 59.87
scpnre414488487.364.76487486.960.94488487.4scpnre514488487.468.45487486.868.29488487.3scpnrf19496495.947.23495494.968.47496496scpnrf2949749638.33496495.337.66497496.2scpnrf39497496.241.05497495.533.47497496.1scpnrf49497496.332.08497495.537.76497496.4scpnrf59497496.330.04496495.527.76497496scpnrg155983982.138.95983979.458.08984981.8scpnrg255983982.339.8898197949.05984982.5	55.57 59.87
scpnre514488487.468.45487486.868.29488487.3scpnrf19496495.947.23495494.968.47496496scpnrf2949749638.33496495.337.66497496.2scpnrf39497496.241.05497495.533.47497496.1scpnrf49497496.332.08497495.537.76497496.4scpnrf59497496.330.04496495.527.76497496scpnrg155983982.138.95983979.458.08984981.8scpnrg255983982.339.8898197949.05984982.5	59.87
scpnrf19496495.947.23495494.968.47496496scpnrf2949749638.33496495.337.66497496.2scpnrf39497496.241.05497495.533.47497496.1scpnrf49497496.332.08497495.330.99497496.4scpnrf5949749630.04496495.527.76497496scpnrg155983982.138.95983979.458.08984981.8scpnrg255983982.339.8898197949.05984982.5	
scpnrf2 9 497 496 38.33 496 495.3 37.66 497 496.2 scpnrf3 9 497 496.2 41.05 497 495.5 33.47 497 496.1 scpnrf4 9 497 496.3 32.08 497 495.3 30.99 497 496.4 scpnrf5 9 497 496 30.04 496 495.5 27.76 497 496 scpnrg1 55 983 982.1 38.95 983 979.4 58.08 984 981.8 scpnrg2 55 983 982.3 39.88 981 979 49.05 984 982.5	62.04
scpnrf3 9 497 496.2 41.05 497 495.5 33.47 497 496.1 scpnrf4 9 497 496.3 32.08 497 495.3 30.99 497 496.4 scpnrf5 9 497 496 30.04 496 495.5 27.76 497 496.4 scpnrg1 55 983 982.1 38.95 983 979.4 58.08 984 981.8 scpnrg2 55 983 982.3 39.88 981 979 49.05 982.5	47.21
scpnrf4 9 497 496.3 32.08 497 495.3 30.99 497 496.4 scpnrf5 9 497 496 30.04 496 495.5 27.76 497 496 scpnrg1 55 983 982.1 38.95 983 979.4 58.08 984 981.8 scpnrg2 55 983 982.3 39.88 981 979 49.05 984 982.5	31.78
scpnrf5 9 497 496 30.04 496 495.5 27.76 497 496 scpnrg1 55 983 982.1 38.95 983 979.4 58.08 984 981.8 scpnrg2 55 983 982.3 39.88 981 979 49.05 984 982.5	28.00
scpnrg1 55 983 982.1 38.95 983 979.4 58.08 984 981.8 scpnrg2 55 983 982.3 39.88 981 979 49.05 984 982.5	24.53
scpnrg2 55 983 982.3 39.88 981 979 49.05 984 982.5	38.04
	49.96
scpnrg3 55 982 981 48.51 981 979.1 67.40 983 981.1	37.29
scpnrg4 55 982 981 48.77 980 978.8 62.34 982 980.9	45.87
scpnrg5 55 983 981.1 41.55 981 978.6 62.93 983 980.9	46.82
scpnrh1 31 991 990.1 82.51 990 986.6 59.64 991 989.8	77.69
scpnrh2 31 991 990.2 85.54 988 985.3 60.03 992 989.8	68.81
scpnrh3 31 992 989.9 77.23 990 986.6 67.69 993 990.3	82.14
scpnrh4 31 991 990.2 80.63 990 986.8 57.61 992 989.9	71.99
scpnrh5 31 992 990.2 78.80 988 986.4 64.50 992 989.9	73.04
scpclr10 23 504 504 4.31 504 504 4.46 504 504	2.97
scpclr11 21 1011 1011 8.87 1011 1011 8.70 1011 1011	5.55
scpclr12 21 2023 2022 45.65 2023 2023 2023 2023 2023 2023	22.41
scpclr13 21 4045 4045 68.57 4047 4045.2 72.15 4045 4045	45.99
scpcyc06 54 227 226.4 22.71 227 227 1.30 227 227	1.71
scpcyc07 130 642 641.8 5.41 642 642 1.06 642 642	0.49
scpcyc08 308 1693 1692.2 4.31 1708 1699.1 36.27 1711 1697.7	48.65
scpcyc09 695 4318 4317 8.30 4352 4322.9 9.97 4318 4316.8	1.54
scpcyc10 1618 10981 10956.9 51.07 10954 10938 27.14 10980 10958.8	50.23
scpcyc11 3571 26603 26549 76.42 26631 26542.1 86.71 26649 26569	62.27
Avg 1046.97 1045.62 23.89 1047.36 1044.94 25.97 1047.89 1045.99	/د.دە

Table 10

Comparison between MMAS-ML and two variants on k_{95} instances.

Eg K95		MMAS-L			MMAS-W			MMAS-ML		
		BEST	AVG	TIME	BEST	AVG	TIME	BEST	AVG	TIME
scp41	36	197	197	1.85	197	197	2.17	197	197	1.00
scp42	35	198	198	1.61	198	198	1.93	198	198	0.99
scp43	36	198	197.3	4.83	198	198	3.96	198	198	2.25
scp44	36	196	196	1.39	196	196	1.83	196	196	1.04
scp45	36	197	197	1.87	197	197	2.14	197	197	1.06
scp46	35	196	196	1.41	196	196	1.69	196	196	0.96
scp47	36	196	196	1.38	196	196	1.84	196	196	0.97
scp48	35	196	196	1.48	196	196	2.07	196	196	1.02
scp49	36	196	196	1.43	196	196	1.98	196	196	0.93
scp410	36	196	196	2.51	196	196	2.05	196	196	0.99
scp51	32	196	196	4.46	196	196	11.34	196	196	2.78
scp52	32	196	196	2.79	196	196	3.16	196	196	1.85
scp53	32	196	196	2.43	196	196	2.63	196	196	1.47
scp54	32	196	196	2.39	196	196	2.67	196	196	1.54
scp55	32	197	196.1	4.20	197	196.5	11.85	197	196.7	16.97
scp56	32	196	196	2.21	196	196	3.14	196	196	1.59
scp57	32	197	197	2.81	197	197	3.17	197	197	1.83
scp58	32	196	196	2.84	196	196	3.26	196	196	1.65
scp59	33	197	197	2.25	197	197	3.44	197	197	1.81
scp510	32	196	196	2.45	196	196	4.04	196	196	1.74
scp61	20	199	199	2.40	199	199	3.51	199	199	1.63
scp62	19	198	198	2.84	198	198	2.61	198	198	1.92
scp63	20	199	199	2.31	199	199	3.59	199	199	1.65
scp64	19	196	196	2.61	196	196	2.79	196	196	1.76
scp65	20	198	198	1.93	198	198	3.30	198	198	1.50
scpa1	36	295	295	7.34	295	294.9	21.44	295	295	3.78
scpa2	36	295	295	4.62	295	295	6.55	295	295	3.14
scpa3	36	295	295	5.24	295	295	5.79	295	295	3.01
scpa4	35	294	294	4.15	294	294	5.81	294	294	3.03
scpa5	36	296	296	15.54	296	296	14.60	296	296	6.98
scpb1	21	299	299	8.73	299	299	13.86	299	299	6.11
scpb2	21	299	299	14.24	299	299	28.03	299	299	8.35
scpb3	21	299	299	18.35	299	299	24.16	299	299	9.51
scpb4	21	299	298.7	28.95	299	298.4	26.73	299	298.9	32.78
scpb5	21	298	298	7.78	298	298	12.42	298	298	5.58
scpc1	41	397	397	41.01	397	396.2	23.85	397	396.8	14.00
scpc2	41	397	397	19.02	397	396.8	26.35	397	397	10.32

Table 10 (continued).

Eg	K95	MMAS-L			MMAS-W			MMAS-ML		
		BEST	AVG	TIME	BEST	AVG	TIME	BEST	AVG	TIME
scpc3	41	397	396.5	25.59	397	396.4	23.37	397	396.7	22.82
scpc4	41	397	397	6.72	397	396.9	11.88	397	397	4.31
scpc5	41	397	396.4	23.40	397	396.2	27.97	397	396.3	15.44
scpd1	23	398	398	16.54	398	398	33.61	398	398	12.04
scpd2	23	397	397	19.77	397	396.6	39.60	397	397	18.93
scpd3	23	397	396.9	21.26	397	396.5	31.44	397	396.7	30.18
scpd4	23	397	396.8	23.53	397	396.1	32.20	397	396.6	33.35
scpd5	23	397	396.4	19.46	397	396.2	30.06	397	396.5	45.79
scpnre1	15	495	494.6	69.16	494	493.6	86.26	495	494.4	52.94
scpnre2	15	495	494.6	72.21	495	493.8	82.56	495	494.3	54.62
scpnre3	15	495	494.6	73.14	494	493.7	84.47	495	494.6	63.06
scpnre4	15	495	494.5	67.05	494	493.4	74.68	495	494.6	67.85
scpnre5	15	495	494.5	68.92	494	493.3	75.66	495	494.3	49.46
scpnrf1	10	500	500	26.97	500	499.8	54.10	500	500	25.53
scpnrf2	10	500	500	40.99	500	499.7	58.71	500	500	38.72
scpnrf3	10	500	500	35.60	500	499.6	63.21	500	500	57.46
scpnrf4	10	500	500	32.22	500	499.2	58.55	500	500	41.56
scpnrf5	10	500	500	38.40	500	499.8	64.31	500	500	51.79
scpnrg1	58	994	993.2	55.54	993	990.4	49.65	995	992.8	27.29
scpnrg2	58	995	993.3	44.54	993	991.1	56.43	995	992.9	36.86
scpnrg3	58	993	992.1	41.07	993	990	59.31	993	991.7	39.88
scpnrg4	58	993	991.3	52.09	991	989.4	48.89	994	991.4	35.13
scpnrg5	58	993	991.8	39.96	992	990	58.19	993	991.4	45.29
scpnrh1	32	996	994.8	78.81	993	991.8	55.28	996	994.4	59.51
scpnrh2	32	996	994.7	81.85	994	991.5	39.87	995	994.1	52.87
scpnrh3	32	995	994.2	68.55	994	991.5	41.68	996	994	59.77
scpnrh4	32	996	994.6	79.24	993	991.4	47.41	996	994.5	44.86
scpnrh5	32	995	994.3	73.11	994	991.6	63.54	995	994.3	43.74
scpclr10	24	509	509	3.65	509	509	4.60	509	509	2.84
scpclr11	22	1015	1015	10.02	1015	1015	9.63	1015	1015	6.78
scpclr12	22	2031	2031	31.88	2031	2031	24.43	2031	2031	18.07
scpclr13	22	4059	4056.5	71.72	4063	4059.2	81.46	4063	4059.3	66.80
scpcyc06	57	235	235	0.68	235	235	0.93	235	235	0.49
scpcyc07	137	657	657	0.02	658	658	2.44	658	658	2.50
scpcyc08	325	1743	1743	0.12	1746	1743.8	13.44	1752	1744	15.31
scpcyc09	733	4463	4451	23.61	4468	4457.2	36.45	4468	4454.1	45.56
scpcyc10	1708	11257	11248.6	42.86	11288	11243	83.32	11 292	11265.4	69.73
scpcyc11	3770	27 272	27 242.7	88.34	27 222	27 182.6	74.83	27 315	27 243.9	61.05
Avg		1066.95	1066.01	24.06	1066.6	1064.82	27.74	1068.27	1066.33	21.06

able 11 ummary of comparison between MMAS-ML and five variants.										
Instances	(MMAS-ML vs.)	MMAS-G	ML	MMAS-M	MMAS-L	MMAS-W				
K90	#Better	9(20)	63(73)	70(75)	8(16)	18(30)				
	#Draw	64(48)	12(2)	5(0)	66(46)	56(41)				
	#Worse	2(7)	0(0)	0(0)	1(13)	1(4)				
K95	#Better	7(14)	26(63)	72(75)	9(13)	16(36)				
	#Draw	68(49)	49(12)	3(0)	65(46)	59(38)				
	#Worse	0(12)	0(0)	0(0)	1(16)	0(1)				

number of elements, while MKCP focuses on covering as many elements as possible. Thus, MMAS-ML may fail to cover elements that are contained in a few sets. This phenomenon emphasizes that the design ideas of algorithms for MKCP and MSCP should be distinctive.

6.5. Effectiveness of the key components of MMAS-ML

To demonstrate the effectiveness of the key components in MMAS-ML, five variants of MMAS-ML were investigated:

- 1. **MMAS-G**: MMAS-ML without the double layer selection heuristic, that is, greedy initialization was applied.
- 2. ML: MMAS-ML without the memory-ants-based max-min ant system, that is, only the local search and the double-layer selection heuristic were integrated into the solver.
- 3. **MMAS-M**: MMAS-ML without any score-based local search, that is, only basic MMAS was applied.
- 4. MMAS-L: MMAS-ML without the oblivious local search.

5. MMAS-W: MMAS-ML with the oblivious local search.

Five algorithm variants on 150 instances under the same experimental protocol as MMAS-ML were tested. Tables 7–10 provide the detailed results on the strategy verification experiments. In these tables, #BEST is the best fitness value, #AVG is the average fitness value, and #TIME records the convergence time. Table 11 shows the statistical results of the comparison between MMAS-ML and its variants. The following observations are made based on the tables:

- 1. MMAS-ML outperforms MMAS-G in terms of both best (16 vs. 2) and average (34 vs. 19) results. This proves that the double-layer selection heuristic provides better initial solutions, enhancing the overall performance of MMAS-ML.
- 2. MMAS-ML outperforms ML in terms of both best (89 vs. 0) and average (136 vs. 0) results. This indicates that although the initial procedure can provide high-quality solutions, the local search is easily trapped in a local optimum. The

MMAS framework ensures that the diversity of the entire population is well maintained.

- 3. In the comparison with MMAS-M, it is observed that MMAS-ML outperforms MMAS-M. In only eight cases, MMAS-M results are identical to those of MMAS-ML. MMAS-M fails on the remaining instances. This confirms the strength of the local search.
- 4. As MMAS-ML applies two local search processes conjunctively. Here, only one search process is tested each time. MMAS-ML performs better than MMAS-L on #BEST metric (17 vs. 2) and achieves the same results on the #AVG metric (29 vs. 29). Moreover, MMAS-ML dominates MMAS-W on 34 instances in terms of the #BEST metric and 66 instances in terms of the #AVG metric. The results reveal that both local search and oblivious local search are necessary to balance the exploration and exploitation of MMAS-ML. The combination of these two methods yields the maximum profit overall.

From the above, it can be concluded that all of the key components of MMAS-ML play an important role in the proposed algorithm, making MMAS-ML competitive.

7. Conclusions and future work

In this paper, a max-min ant system with memory ants and a novel local search, namely MMAS-ML are proposed for solving MKCP. First, a double-layer selection heuristic is designed based on the scoring of columns, which enhances the selection process when ties occur. To increase the intensification capacity of each ant, a local search based on multiple scoring mechanisms and delayed configuration checking is applied accordingly. The multiple scoring mechanism refines the search direction of the local search, while delayed configuration checking helps avoid repeated searches of previous solutions. Finally, memory ants can maintain parts of the routines from the last iteration to accelerate the convergence of the construction process.

Experimental results demonstrate that MMAS-ML outperforms previous algorithms with an obvious performance enhancement. Specifically, MMAS-ML can discover a total of 16 improved bestknown solutions of MKCP. Compared with the state-of-the-art algorithm HBABC, MMAS-ML is superior in 24 instances and inferior in 4 instances. On the results obtained by both algorithms, MMAS-ML outperforms HBABC on 54 instances in terms of the average metric, demonstrating its robustness. Furthermore, three key components of MMAS-ML were investigated and discussed in the form of experimental verification. Comparative results show that the double-layer selection heuristic, the memory-ant framework, and score-based local search are effective. Among them, the score-based local search is the most indispensable component; without it, the algorithm deteriorates on 142 out of 150 instances.

This work advances the solution of the maximum set kcovering problem, which plays a significant role in combinatorial optimization. The idea of distinguishing the different duties of each ant sheds light on the swarm-based algorithms from a more detailed perspective, and thus can also be considered for other optimization problems. Another interesting possibility for future work is to pursue a more efficient local search together with some reduction rules for large-scale MKCP. Although the fixed parameters of MMAS-ML were carefully tuned, the adaptive adjustment of these parameters is still an open question to be answered.

CRediT authorship contribution statement

Yupeng Zhou: Conceptualization, Methodology, Validation, Writing – original draft, Writing – review & editing. **Xiaofan Liu:** Methodology, Software, Investigation. **Shuli Hu:** Data curation, Resources, Formal analysis. **Yiyuan Wang:** Conceptualization, Writing – original draft, Writing – review & editing, Funding acquisition. **Minghao Yin:** Writing – original draft, Supervision, Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgment

This work is supported by the Fundamental Research Funds for the Central Universities, China (2412020FZ030, 2412018QD022, 2412020QD008), NSFC, China under Grant No. (61806050, 61972063, 61976050, 61972384, 62106040), Jilin Science and Technology Association, China QT202005, and Jilin Provincial Science and Technology Department, China under Grant No. 20190302109GX.

References

- D.S. Johnson, M.R. Garey, Computers and Intractability: A Guide to the Theory of NP-Completeness, WH Freeman, 1979.
- [2] J.-F. Cordeau, F. Furini, I. Ljubić, Benders decomposition for very large scale partial set covering and maximal covering location problems, European J. Oper. Res. 275 (3) (2019) 882–896.
- [3] Z. Wang, J. Liao, Q. Cao, H. Qi, Z. Wang, Achieving k-barrier coverage in hybrid directional sensor networks, IEEE Trans. Mob. Comput. 13 (7) (2013) 1443–1455.
- [4] B. Saha, L. Getoor, On maximum coverage in the streaming model & application to multi-topic blog-watch, in: Proceedings of the 2009 Siam International Conference on Data Mining, SIAM, 2009, pp. 697–708.
- [5] F. Chierichetti, R. Kumar, A. Tomkins, Max-cover in map-reduce, in: Proceedings of the 19th International Conference on World Wide Web, ACM, 2010, pp. 231–240.
- [6] G. Lin, J. Guan, Solving maximum set k-covering problem by an adaptive binary particle swarm optimization method, Knowl.-Based Syst. 142 (2018) 95–107.
- [7] G. Lin, H. Xu, X. Chen, J. Guan, An effective binary artificial bee colony algorithm for maximum set k-covering problem, Expert Syst. Appl. 161 (2020) 113717.
- [8] M. Dorigo, L.M. Gambardella, Ant colonies for the travelling salesman problem, Biosystems 43 (2) (1997) 73–81.
- [9] R. Jovanovic, M. Tuba, An ant colony optimization algorithm with improved pheromone correction strategy for the minimum weight vertex cover problem, Appl. Soft Comput. 11 (8) (2011) 5360–5366.
- [10] M. Kong, P. Tian, Y. Kao, A new ant colony optimization algorithm for the multidimensional knapsack problem, Comput. Oper. Res. 35 (8) (2008) 2672–2683.
- [11] C. Solnon, S. Fenet, A study of ACO capabilities for solving the maximum clique problem, J. Heuristics 12 (3) (2006) 155–180.
- [12] L. Lessing, I. Dumitrescu, T. Stützle, A comparison between ACO algorithms for the set covering problem, in: International Workshop on Ant Colony Optimization and Swarm Intelligence, Springer, 2004, pp. 1–12.
- [13] Z.-G. Ren, Z.-R. Feng, L.-J. Ke, Z.-J. Zhang, New ideas for applying ant colony optimization to the set covering problem, Comput. Ind. Eng. 58 (4) (2010) 774–784.
- [14] X. Xia, X. Peng, W. Liao, On the analysis of ant colony optimization for the maximum independent set problem, Front. Comput. Sci. 15 (4) (2021) 1–3.
- [15] M. Paniri, M.B. Dowlatshahi, H. Nezamabadi-pour, MLACO: A multilabel feature selection algorithm based on ant colony optimization, Knowl.-Based Syst. 192 (2020) 105285.
- [16] H. Ghimatgar, K. Kazemi, M.S. Helfroush, A. Aarabi, An improved feature selection algorithm based on graph clustering and ant colony optimization, Knowl.-Based Syst. 159 (2018) 270–285.

- [17] B.C. Mohan, R. Baskaran, A survey: Ant Colony Optimization based recent research and implementation on several engineering domain, Expert Syst. Appl. 39 (4) (2012) 4618–4627.
- [18] M. Dorigo, T. Stützle, Ant colony optimization: overview and recent advances, in: Handbook of Metaheuristics, Springer, 2019, pp. 311–351.
- [19] T. Stützle, H.H. Hoos, MAX-MIN ant system, Future Gener. Comput. Syst. 16 (8) (2000) 889–914.
- [20] S. Cai, Balance between complexity and quality: Local search for minimum vertex cover in massive graphs, in: Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI, 2015, pp. 747–753.
- [21] S. Cai, K. Su, Q. Chen, EWLS: A new local search for minimum vertex cover, in: Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI, 2010, pp. 45–50.
- [22] X. Chen, Y.-S. Ong, M.-H. Lim, K.C. Tan, A multi-facet survey on memetic computation, IEEE Trans. Evol. Comput. 15 (5) (2011) 591–607.
- [23] F. Neri, C. Cotta, Memetic algorithms and memetic computing optimization: A literature review, Swarm Evol. Comput. 2 (2012) 1–14.
- [24] J.E. Beasley, OR-Library: distributing test problems by electronic mail, J. Oper. Res. Soc. 41 (11) (1990) 1069–1072.
- [25] Y. Wang, D. Ouyang, L. Zhang, M. Yin, A novel local search for unicost set covering problem using hyperedge configuration checking and weight diversity, Sci. China Inf. Sci. 60 (6) (2017) 62103.
- [26] C. Gao, X. Yao, T. Weise, J. Li, An efficient local search heuristic with row weighting for the unicost set covering problem, European J. Oper. Res. 246 (3) (2015) 750–761.
- [27] D.S. Hochba, Approximation algorithms for np-hard problems, ACM Sigact News 28 (2) (1997) 40–52.

- Knowledge-Based Systems 239 (2022) 108000
- [28] H. Yu, D. Yuan, Set coverage problems in a one-pass data stream, in: Proceedings of the 2013 SIAM International Conference on Data Mining, SIAM, 2013, pp. 758–766.
- [29] A. McGregor, H.T. Vu, Better streaming algorithms for the maximum coverage problem, Theory Comput. Syst. 63 (7) (2019) 1595–1619.
- [30] Y. Wang, D. Ouyang, M. Yin, L. Zhang, Y. Zhang, A restart local search algorithm for solving maximum set k-covering problem, Neural Comput. Appl. 29 (10) (2018) 755–765.
- [31] S. Cai, K. Su, A. Sattar, Local search with edge weighting and configuration checking heuristics for minimum vertex cover, Artificial Intelligence 175 (9–10) (2011) 1672–1696.
- [32] Y. Wang, M. Yin, D. Ouyang, L. Zhang, A novel local search algorithm with configuration checking and scoring mechanism for the set k-covering problem, Int. Trans. Oper. Res. 24 (6) (2017) 1463–1485.
- [33] S. Cai, K. Su, Comprehensive score: Towards efficient local search for SAT with long clauses, in: Twenty-Third International Joint Conference on Artificial Intelligence, 2013.
- [34] Y. Wang, C. Li, H. Sun, J. Chen, M. Yin, MLQCC: an improved local search algorithm for the set k-covering problem, ITOR 26 (3) (2019) 856–887.
- [35] M. López-Ibánez, J. Dubois-Lacoste, T. Stützle, M. Birattari, The Irace Package, Iterated Race for Automatic Algorithm Configuration, Tech. rep., Technical Report TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles ..., 2011.
- [36] H.B. Mann, D.R. Whitney, On a test of whether one of two random variables is stochastically larger than the other, Ann. Math. Stat. (1947) 50–60.